Istruzioni d'uso

Sensore radar per la misura continua di livello di liquidi

VEGAPULS 61

Bifilare 4 ... 20 mA/HART

Document ID: 36499

Sommario

1	Il contenuto di questo documento	
	1.1 Funzione	
	1.2 Documento destinato ai tecnici	4
	1.3 Significato dei simboli	4
2	Criteri di sicurezza	-
2		
	2.1 Personale autorizzato	
	2.2 Uso conforme alla destinazione e alle normative	
	2.3 Avvertenza relativa all'uso improprio	5
	2.4 Avvertenze di sicurezza generali	
	2.5 Conformità UE	
	2.6 Raccomandazioni NAMUR	6
	Omologazione radiotecnica per l'Europa	6
	2.8 Salvaguardia ambientale	/
3	Descrizione del prodotto	8
	3.1 Struttura	8
	3.2 Funzionamento	
	3.3 Imballaggio, trasporto e stoccaggio	10
	3.4 Accessori e parti di ricambio	10
4	Montaggio	
4		
	4.1 Avvertenze generali	
	4.2 Flangia di raccordo o di adattamento	
	4.3 Preparazione al montaggio con staffa	
	4.4 Indicazioni di montaggio	15
	4.5 Configurazioni di misura - Tubi	
	4.6 Configurazioni di misura - Portata	
5	Collegamento all'alimentazione in tensione	28
	5.1 Preparazione del collegamento	28
	5.2 Collegamento	29
	5.3 Schema di collegamento custodia a una camera	30
	5.4 Schema di allacciamento custodia a due camere	31
	5.5 Schema di allacciamento custodia a due camere Ex d ia	33
	5.6 Custodia a due camere con adattatore VEGADIS	34
	5.7 Schema elettrico - Esecuzione IP 66/IP 68, 1 bar	
	5.8 Fase d'avviamento	35
6	Messa in servizio con il tastierino di taratura con display	36
٠	6.1 Installare il tastierino di taratura con display	36
	6.2 Sistema operativo	30
	6.3 Visualizzazione del valore di misura - Selezione lingua nazionale	
	6.4 Parametrizzazione	
	6.5 Protezione dei dati di parametrizzazione	
	·	
7	Messa in servizio con PACTware	
	7.1 Collegamento del PC	
	7.2 Parametrizzazione	
	7.3 Protezione dei dati di parametrizzazione	61
8	Messa in servizio con altri sistemi	62
-		

	8.1	Programmi di servizio DD	62
	8.2	Field Communicator 375, 475	62
9	Diagi	nostica, Asset Management e assistenza	. 63
	9.1	Manutenzione	63
	9.2	Memoria di valori di misura e di eventi	
	9.3	Funzione di Asset Management	64
	9.4	Eliminazione di disturbi	67
	9.5	Sostituzione dell'unità l'elettronica	
	9.6	Aggiornamento del software	.72
	9.7	Come procedere in caso di riparazione	72
10	Smoi	ntaggio	74
		Sequenza di smontaggio	
		Smaltimento	
	A	ndice	75
11			
		Dati tecnici	
		Dimensioni	
	11.3	Diritti di proprietà industriale	95
	11.4	Marchio depositato	. 95

Normative di sicurezza per luoghi Ex

Per le applicazioni Ex prestare attenzione alle relative avvertenze di sicurezza specifiche. Si tratta di un documento allegato a ciascun apparecchio con omologazione Ex ed è parte integrante delle istruzioni ďuso.

Finito di stampare: 2018-11-23

1 Il contenuto di questo documento

1.1 Funzione

Le presenti Istruzioni d'uso forniscono le informazioni necessarie per il montaggio, l'allacciamento e la messa in servizio dell'apparecchio, nonché indicazioni importanti per la manutenzione, l'eliminazione dei guasti, la sostituzione di pezzi e la sicurezza dell'utente. Leggerle perciò prima della messa in servizio e conservarle come parte integrante del prodotto nelle immediate vicinanze dell'apparecchio, in modo da poterle consultare all'occorrenza.

1.2 Documento destinato ai tecnici

Queste Istruzioni d'uso si rivolgono al personale qualificato debitamente istruito che deve poter accede ai contenuti e procedere alla relativa attuazione.

1.3 Significato dei simboli

ID documento

Questo simbolo sulla copertina di queste istruzioni d'uso rimanda all'ID del documento. Inserendo l'ID del documento sul sito www.vega.com è possibile accedere alla sezione di download per scaricare i diversi documenti.

Informazioni, consigli, indicazioni

Questo simbolo identifica utili informazioni ausiliarie.

Attenzione: l'inosservanza di questo avviso di pericolo può provocare disturbi o errori di misura.

Avvertenza: l'inosservanza di questo avvertimento di pericolo può provocare danni alle persone e/o all'apparecchio.

Pericolo: l'inosservanza di questo avviso di pericolo può provocare gravi lesioni alle persone e/o danni all'apparecchio.

Applicazioni Ex

Questo simbolo identifica le particolari istruzioni per gli impieghi Ex.

Flence

Questo punto identifica le singole operazioni di un elenco, non soggette ad una sequenza obbligatoria.

→ Passo operativo

Questa freccia indica un singolo passo operativo.

1 Sequenza operativa

I numeri posti davanti ai passi operativi identificano la sequenza delle singole operazioni.

Smaltimento di batterie

Questo simbolo contrassegna particolari avvertenze per lo smaltimento di batterie e accumulatori.

2 Criteri di sicurezza

2.1 Personale autorizzato

Tutte le operazioni descritte in questa documentazione devono essere eseguite unicamente da personale qualificato e autorizzato dal gestore dell'impianto.

Per l'uso dell'apparecchio indossare sempre l'equipaggiamento di protezione personale necessario.

2.2 Uso conforme alla destinazione e alle normative

Il VEGAPULS 61 è un sensore per la misura continua di livello.

Informazioni dettagliare relative al campo di impiego sono contenute nel capitolo "Descrizione del prodotto".

La sicurezza operativa dell'apparecchio è garantita solo da un uso conforme alle normative, secondo le -Istruzioni d'uso- ed eventuali istruzioni aggiuntive.

2.3 Avvertenza relativa all'uso improprio

In caso di utilizzo improprio o non conforme alla destinazione, il prodotto può essere fonte di pericoli connessi alla specifica applicazione, per es. tracimazione del serbatoio in seguito a montaggio o regolazione errati. Ciò può causare danni alle persone, alle cose e all'ambiente e può inoltre compromettere le caratteristiche di protezione dell'apparecchio.

2.4 Avvertenze di sicurezza generali

L'apparecchio è allo stato dell'arte ed è conforme alle prescrizioni e alle direttive in vigore. Può essere utilizzato solo in perfette condizioni tecniche e massima sicurezza operativa. Il gestore è responsabile del funzionamento ineccepibile dell'apparecchio. In caso di impiego con prodotti aggressivi o corrosivi, in cui il malfunzionamento dell'apparecchio può avere conseguenze critiche, il gestore deve predisporre le misure necessarie per assicurarne il corretto funzionamento.

È inoltre compito del gestore garantire, per tutta la durata del funzionamento, che le necessarie misure di sicurezza corrispondano allo stato attuale delle norme in vigore e rispettino le nuove disposizioni.

L'utente deve inoltre rispettare le normative di sicurezza di queste istruzioni d'uso, gli standard nazionali s'installazione e le vigenti condizioni di sicurezza e di protezione contro gli infortuni.

Per ragioni di sicurezza e garanzia, gli interventi che vanno oltre le operazioni descritte nelle Istruzioni d'uso possono essere effettuati esclusivamente dal personale autorizzato dal costruttore. È espressamente vietata l'esecuzione di modifiche o trasformazioni. Per ragioni di sicurezza è consentito esclusivamente l'impiego degli accessori indicati dal costruttore.

Per evitare pericoli vanno osservati i contrassegni e le avvertenze di sicurezza applicati sull'apparecchio, il cui significato va consultato nelle presenti Istruzioni d'uso.

Le frequenze di trasmissione dei sensori radar sono comprese nella banda C, K o W in base all'esecuzione dell'apparecchio. Le ridotte intensità di trasmissione sono molto inferiori ai valori limite internazionali ammessi. Un uso appropriato dell'apparecchio garantisce un funzionamento assolutamente privo di rischi per la salute.

2.5 Conformità UE

L'apparecchio soddisfa i requisiti di legge ai sensi delle relative direttive UE. Con il contrassegno CE confermiamo la conformità dell'apparecchio a queste direttive.

La dichiarazione di conformità UE è disponibile sulla nostra hompage all'indirizzo www.vega.com/downloads.

Compatibilità elettromagnetica

Gli apparecchi in esecuzione quadrifilare o Ex-d-ia sono realizzati per l'impiego nel settore industriale. In questo contesto è possibile che si verifichino perturbazioni condotte o irradiate, comuni negli apparecchi della classe A secondo EN 61326-1. Per usare l'apparecchio in un altro settore è necessario garantire la compatibilità elettromagnetica con altri apparecchi, applicando gli accorgimenti idonei.

2.6 Raccomandazioni NAMUR

La NAMUR è l'Associazione d'interesse per la tecnica di controllo di processo nell'industria chimica e farmaceutica in Germania. Le raccomandazioni NAMUR valgono come standard per la strumentazione di campo.

L'apparecchio soddisfa i requisiti stabiliti dalle seguenti raccomandazioni NAMUR:

- NE 21 compatibilità elettromagnetica di strumenti
- NE 43 livello segnale per l'informazione di guasto di convertitori di misura
- NE 53 compatibilità di apparecchi di campo e componenti d'indicazione e di calibrazione
- NE 107 Autosorveglianza e diagnostica di apparecchi di campo

Per ulteriori informazioni consultare il sito www.namur.de.

2.7 Omologazione radiotecnica per l'Europa

L'apparecchio è stato testato conformemente all'edizione attuale delle seguenti norme armonizzate:

EN 302372 - Tank Level Probing Radar

È quindi omologato per l'impiego all'interno di serbatoi chiusi nei paesi dell'UE.

Nei paesi dell'EFTA è omologato per l'impiego a condizione che siano stati applicati i relativi standard.

Per l'impiego in serbatoi chiusi devono essere soddisfatti i requisiti previsti nei punti a-f dell'Allegato E della norma EN 302372.

2.8 Salvaguardia ambientale

La protezione delle risorse naturali è un compito di assoluta attualità. Abbiamo perciò introdotto un sistema di gestione ambientale, allo scopo di migliorare costantemente la difesa dell'ambiente aziendale. Questo sistema è certificato secondo DIN EN ISO 14001.

Aiutateci a rispettare queste esigenze e attenetevi alle indicazioni di queste -lstruzioni d'uso- per la salvaguardia ambientale:

- Capitolo "Imballaggio, trasporto e stoccaggio"
- Capitolo "Smaltimento"

3 Descrizione del prodotto

3.1 Struttura

Targhetta d'identificazione

La targhetta d'identificazione contiene i principali dati relativi all'identificazione e all'impiego dell'apparecchio:

Figura 1: Struttura della targhetta d'identificazione (esempio)

- 1 Tipo di apparecchio
- 2 Codice del prodotto
- 3 Omologazioni
- 4 Alimentazione e uscita di segnale dell'elettronica
- 5 Grado di protezione
- 6 Campo di misura
- 7 Temperatura di processo, temperatura ambiente, pressione di processo
- 8 Materiale delle parti a contatto col prodotto
- 9 Versione hardware e software
- 10 Numero d'ordine
- 11 Numero di serie dell'apparecchio
- 12 Codice Data Matrix per l'app VEGA Tools
- 13 Simbolo per la classe di protezione dell'apparecchio
- 14 Numero ID documentazione apparecchio
- 15 Avvertenza a osservare la documentazione dell'apparecchio

Ricerca dell'apparecchio tramite il numero di serie

La targhetta d'identificazione contiene il numero di serie dell'apparecchio, tramite il quale sulla nostra homepage è possibile trovare i seguenti dati relativi all'apparecchio:

- codice del prodotto (HTML)
- data di fornitura (HTML)
- caratteristiche dell'apparecchio specifiche della commessa (HTML)
- Istruzioni d'uso e Istruzioni d'uso concise al momento della fornitura (PDF)
- dati del sensore specifici della commessa per una sostituzione dell'elettronica (XML)
- certificato di prova (PDF) opzionale

Sul sito "www.vega.com" inserire il numero di serie nel capo "Ricerca".

In alternativa è possibile trovare i dati tramite smartphone:

- scaricare l'app VEGA Tools da "Apple App Store" oppure da "Google Play Store"
- scansionare il codice Data Matrix riportato sulla targhetta d'identificazione dell'apparecchio, oppure
- immettere manualmente nell'app il numero di serie

Campo di applicazione di queste Istruzioni d'uso

Queste -Istruzioni d'uso- valgono per le seguenti esecuzioni di apparecchi:

- Versione hardware da 2.1.0
- Versione del software da 4.5.3

Fsecuzioni

L'apparecchio è fornito in due differenti esecuzioni dell'elettronica. L'esecuzione è riconoscibile dal codice del prodotto sulla targhetta d'identificazione e sull'elettronica.

- Elettronica standard tipo PS60HK.-
- Elettronica con sensibilità elevata tipo PS60HS.-

Materiale fornito

La fornitura comprende:

- Sensore radar
- Accessori di montaggio opzionali
- Documentazione
 - Istruzioni d'uso concise VEGAPULS 61
 - Istruzioni per l'equipaggiamento opzionale
 - "Normative di sicurezza" specifiche Ex (per esecuzioni Ex)
 - Eventuali ulteriori certificazioni.

Informazione:

In queste Istruzioni d'uso sono descritte anche le caratteristiche opzionali dell'apparecchio. Il volume della fornitura dipende dalla specifica d'ordine.

3.2 Funzionamento

Campo d'impiego

Il VEGAPULS 61 è un sensore radar per la misura continua di livello su liquidi in presenza di semplici condizioni di processo.

A seconda del campo d'impiego si utilizzano diversi modelli:

- Misura di livello su liquidi aggressivi in serbatoi di piccole dimensioni: sistema di antenna incapsulato
- Misura di portata in canali aperti o misura d'altezza nelle acque: antenna a cono di resina
- Prodotti con un valore ε, ≥ 1,8: unità elettronica standard
- Prodotti con un valore ɛ, ≥1,5, < 1,8; applicazioni con pessime caratteristiche di riflessione: unità elettronica ad elevata sensibilità

I valori effettivamente ottenibili dipendono dalle condizioni di misura, dal sistema di antenna ovv. dal tubo di livello o bypass.

Principio di funzionamento

L'antenna del sensore radar invia brevi impulsi radar di ca. 1 ns, che saranno riflessi dal prodotto e nuovamente captati dall'antenna come echi. Il tempo d'andata e ritorno degli impulsi radar dall'emissione

alla ricezione corrisponde alla distanza ed é quindi proporzionale all'altezza di livello. L'altezza di livello cosí misurata sará trasformata in un segnale d'uscita e fornita come valore di misura.

3.3 Imballaggio, trasporto e stoccaggio

Imballaggio

Durante il trasporto l'apparecchio è protetto dall'imballaggio. Un controllo in base a ISO 4180 garantisce il rispetto di tutte le esigenze di trasporto previste.

L'imballaggio degli apparecchi standard è di cartone ecologico e riciclabile. Per le esecuzioni speciali si aggiunge polietilene espanso o sotto forma di pellicola. Smaltire il materiale dell'imballaggio tramite aziende di riciclaggio specializzate.

Trasporto

Per il trasporto è necessario attenersi alle indicazioni relative all'imballaggio di trasporto. Il mancato rispetto può causare danni all'apparecchio.

Ispezione di trasporto

Al ricevimento della merce è necessario verificare immediatamente l'integrità della spedizione ed eventuali danni di trasporto. I danni di trasporto constatati o difetti nascosti devono essere trattati di conseguenza.

Stoccaggio

I colli devono restare chiusi fino al momento del montaggio, rispettando i contrassegni di posizionamento e di stoccaggio applicati esternamente.

Salvo indicazioni diverse, riporre i colli rispettando le seguenti condizioni:

- Non collocarli all'aperto
- Depositarli in un luogo asciutto e privo di polvere
- Non esporli ad agenti aggressivi
- Proteggerli dall'irradiazione solare
- Evitare urti meccanici

Temperatura di trasporto e di stoccaggio

- Temperatura di stoccaggio e di trasporto vedi "Appendice Dati tecnici - Condizioni ambientali"
- Umidità relativa dell'aria 20 ... 85%

Sollevamento e trasporto

Se il peso degli apparecchi supera i 18 kg (39.68 lbs), per il sollevamento e il trasporto vanno impiegati dispositivi adeguati e omologati.

PLICSCOM

3.4 Accessori e parti di ricambio

Il tastierino di taratura con display PLICSCOM serve per la visualizzazione del valore di misura, la calibrazione e la diagnostica. Può essere inserito e rimosso in qualsiasi momento nel/dal sensore ovv. nella/dalla unità d'indicazione e calibrazione esterna.

Il modulo Bluetooth (opzionale) integrato consente la calibrazione wireless tramite strumenti di calibrazione standard:

- smartphone/tablet (sistema operativo iOS o Android)
- PC/notebook con adattatore USB Bluetooth (sistema operativo Windows)

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "Tastierino di taratura con display PLICSCOM" (ID documento 36433).

VEGACONNECT

L'adattatore d'interfaccia VEGACONNECT permette di collegare all'interfaccia USB di un PC apparecchi interfacciabili. Per la parametrizzazione di questi apparecchi è necessario il software di servizio PACTware con VEGA-DTM.

Ulteriori informazioni sono contenute nelle -lstruzioni d'uso- "Adattatore d'interfaccia VEGACONNECT" (ID documento 32628).

VEGADIS 81

Il VEGADIS 81 è un'unità esterna di visualizzazione e di servizio per

sensori plics® VEGA.

Per i sensori con custodia a due camere è necessario anche l'adattatore d'interfaccia "adattatore VEGADIS" per il VEGADIS 81.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "VEGA-DIS 81" (ID documento 43814).

Adattatore per VEGADIS

L'adattatore VEGADIS è un accessorio per sensori con custodia a due camere. Consente il collegamento di VEGADIS 81 alla custodia del sensore tramite un connettore M12 x .

Informazioni dettagliate sono contenute nelle -lstruzioni supplementari- "Adattatore VEGADIS" (ID documento: 45250).

VEGADIS 82

Il VEGADIS 82 consente la visualizzazione dei valori di misura e la parametrizzazione dei sensori con protocollo HART. È inserito nella linea del segnale 4 ... 20 mA/HART.

Ulteriori informazioni sono contenute nelle -lstruzioni d'uso- "VEGA-DIS 82 4 ... 20 mA/HART" (ID documento 45300).

PLICSMOBILE T81

Il PLICSMOBILE T81 è un trasmettitore radio GSM/GPRS/UMTS esterno per la trasmissione di valori di misura e la parametrizzazione a distanza di sensori HART. La calibrazione si esegue tramite un PC con PACTware e il relativo DTM oppure tramite smartphone/tablet con l'app VEGA Tools. Il collegamento viene creato tramite l'interfaccia Bluetooth integrata nel PLICSMOBILE.

Ulteriori informazioni sono disponibili nelle -Istruzioni d'uso- "PLIC-SMOBILE T81/B81/S81" (ID documento 55234).

PLICSMOBILE 81

Il PLICSMOBILE 81 è un trasmettitore radio GSM/GPRS/UMTS interno per sensori HART per la trasmissione di valori di misura e la parametrizzazione a distanza. La calibrazione si esegue tramite un PC con PACTware e il relativo DTM oppure tramite smartphone/tablet con l'app VEGA Tools. Il collegamento viene creato tramite l'interfaccia Bluetooth integrata nel PLICSMOBILE.

Informazioni dettagliate sono contenute nelle -Istruzioni supplementari- "PLICSMOBILE" (ID documento: 56160).

Protezione contro le sovratensioni

La protezione contro le sovratensioni B81-35 viene impiegata al posto dei morsetti nella custodia a una o due camere. Limita le sovratensioni che si presentano sulle linee di segnale.

Informazioni dettagliate sono contenute nelle -Istruzioni supplementari- "Protezione contro le sovratensioni B81-35" (ID documento 50708).

Cappa di protezione

La cappa di protezione protegge la custodia del sensore da impurità

e forte riscaldamento per effetto dell'irradiazione solare.

Trovate ulteriori informazioni nelle -Istruzioni supplementari-"*Cappa di protezione*" (ID documento 34296).

Unità elettronica

L'unità elettronica VEGAPULS Serie 60 è un componente sostituibile per i sensori radar VEGAPULS Serie 60. È disponibile in numerose

esecuzioni idonee alle differenti uscite del segnale.

Ulteriori informazioni sono contenute nelle -Istruzioni d'uso- "Unità elettronica VEGAPULS Serie 60" (ID documento 36801).

Elettronica supplementare per custodia a due camere

L'elettronica supplementare è un pezzo di ricambio per sensori

4 ... 20 mA/HART con custodia a due camere.

Per ulteriori informazioni si rimanda alle Istruzioni d'uso "*Elettronica supplementare per 4 ... 20 mA//HART - bifilare*" (ID documento: 42764).

4 Montaggio

4.1 Avvertenze generali

Avvitare

Negli apparecchi con attacco filettato, il dado esagonale sull'attacco di processo va serrato con una chiave adeguata.

Apertura chiave v. capitolo "Dimensioni".

Attenzione:

La custodia o l'allacciamento elettrico non possono essere impiegati per l'avvitamento! Il serraggio può causare danni, per es. alla meccanica di rotazione della custodia.

Protezione dall'umidità

Proteggere l'apparecchio dalle infiltrazioni di umidità attuando le seguenti misure:

- utilizzare un cavo adeguato (v. capitolo "Collegamento all'alimentazione in tensione")
- Serrare bene il pressacavo ovv. il connettore a spina
- In caso di montaggio orizzontale ruotare la custodia in modo che il pressacavo ovv. il connettore a spina siano rivolti verso il basso
- Condurre verso il basso il cavo di collegamento davanti al pressacavo ovv. al connettore a spina.

Questo vale soprattutto in caso di montaggio all'aperto, in locali nei quali è prevista la presenza di umidità (per es. in seguito a processi di pulizia) e in serbatoi refrigerati o riscaldati.

Per garantire il mantenimento del grado di protezione dell'apparecchio, assicurare che nel corso dell'esercizio il coperchio della custodia sia chiuso ed eventualmente assicurato.

Assicurarsi che il grado di inquinamento indicato nel capitolo "Dati tecnici" delle istruzioni d'uso sia adeguato alle condizioni ambientali esistenti.

processo

Idoneità alle condizioni di Prima del montaggio assicurarsi che tutti i componenti dell'apparecchio coinvolti nel processo siano adeguati alle effettive condizioni di processo.

Tra questi rientrano in particolare:

- Componente attivo di misura
- Attacco di processo
- Guarnizione di processo

Tra le condizioni di processo rientrano in particolare:

- Pressione di processo
- Temperatura di processo
- Caratteristiche chimiche dei prodotti
- Abrasione e influssi meccanici

I dati relativi alle condizioni di processo sono indicati nel capitolo "Dati tecnici" e sulla targhetta d'identificazione.

Idoneità alle condizioni ambientali

Lo strumento è idoneo all'impiego in condizioni ambiente normali e ampliate secondo IEC/EN 61010-1.

4.2 Flangia di raccordo o di adattamento

Per il montaggio dell'apparecchio su un tronchetto è disponibile una flangia di raccordo combinata DN 80 (ASME 3" o JIS 80) anche per soluzioni preesistenti. Opzionalmente l'apparecchio può essere equipaggiato in laboratorio con una flangia di adattamento a partire da DN 100 (ASME 4" o JIS 100).

Con le differenti custodie di resina, di alluminio ad una camera e d'acciaio speciale, la flangia di raccordo può essere collegata diettamente alla custodia. Con custodia di alluminio a due camere è necessario stabilire nell'ordine il tipo di montaggio, poiché è impossibile eseguirlo in un secondo tempo.

Trovate i disegni relativi a queste opzioni di montaggio nel capitolo "Dimensioni".

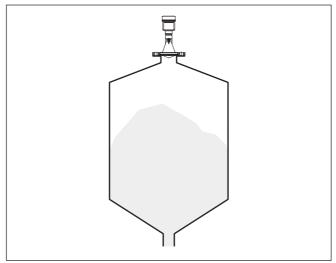


Figura 2: Montaggio con flangia del sensore radar

4.3 Preparazione al montaggio con staffa

La staffa di montaggio consente un facile fissaggio alla parete del serbatoio o al cielo del silo. È idonea al montaggio a parete, sul cielo del serbatoio o su braccio di supporto e in particolare nei serbatoi aperti consente di orientare il sensore verso la superficie del prodotto solido in maniera semplice ed efficace.

La staffa è fornita separata e deve essere avvitata al sensore prima della messa in servizio con tre viti ad esagono cavo M5 x 10 e rosette elastiche. Max. coppia di serraggio vedi "*Dati tecnici*". Utensili necessari: Chiave per viti ad esagono cavo dimensione 4.

Per avvitare la staffa al sensore avete due possibilità. In base alla variante selezionata potete orientare il sensore nella staffa in questo modo:

• Custodia a una camera

- Angolo d'inclinazione 180° progressivo
- Angolo d'inclinazione regolabile a 0°, 90° e 180°
- Custodia a due camere
 - Angolo d'inclinazione 90° progressivo
 - Angolo d'inclinazione regolabile a 0° e 90°

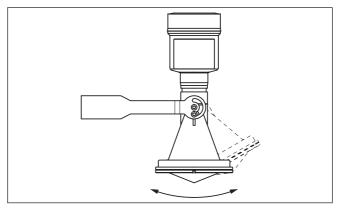


Figura 3: Regolazione dell'angolo d'inclinazione

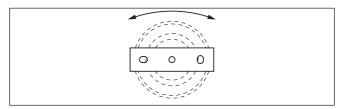


Figura 4: Ruotare fissando al centro

4.4 Indicazioni di montaggio

Montaggio a tenuta stagna dell'antenna a cono di resina Per il montaggio a tenuta stagna del modello con antenna a cono di resina con flangia di raccordo o di adattamento devono essere soddisfatti i seguenti presupposti:

- Utilizzare una guarnizione piatta adeguata per es. di EPDM con durezza Shore 25 o 50
- Il numero di viti della flangia deve corrispondere al numero di fori della flangia
- Serrare tutte le viti con la coppia indicata nelle caratteristiche tecniche

Polarizzazione

Gli impulsi radar inviati dal sensore radar sono onde elettromagnetiche. La polarizzazione corrisponde all'orientamento della parte elettrica. Facendo ruotare l'apparecchio nella flangia di raccordo o nel tronchetto filettato potete usare la polarizzazione per ridurre le ripercussioni degli echi di disturbo.

La posizione della polarizzazione è identificata da un contrassegno sull'attacco di processo dell'apparecchio.

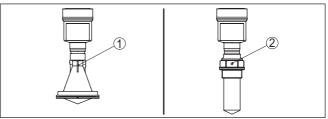


Figura 5: Posizione della polarizzazione

- 1 Contrassegno dell'esecuzione con antenna a cono in resina
- 2 Contrassegno dell'esecuzione con sistema di antenna incapsulato

Posizione di montaggio

Montate il sensore in una posizione distante almeno 200 mm (7.874 in) dalla parete del serbatoio. Se il sensore è installato al centro di un serbatoio con cielo bombato o curvo, possono verificarsi echi multipli, che saranno soppressi mediante una idonea taratura (vedi capitolo "Messa in servizio").

Se non è possibile rispettare questa distanza, in fase di messa in servizio è consigliabile eseguire una soppressione dei segnali di disturbo. Ciò vale in particolare se è prevedibile la formazione di adesioni sulla parete del serbatoio. In questo caso è opportuno ripetere la soppressione dei segnali di disturbo in un momento successivo in presenza delle adesioni.

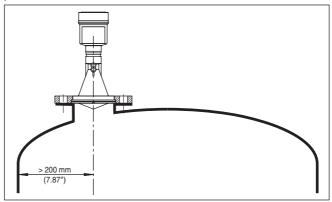


Figura 6: Montaggio del sensore radar su un cielo del serbatoio bombato

Nei serbatoi con fondo conico è opportuno posizionare il sensore al centro del serbatoio, in modo da poter eseguire la misura fino al fondo.

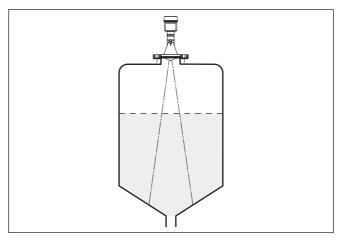


Figura 7: Montaggio del sensore su un serbatoio con fondo conico

Prodotto in ingresso

Non montare gli apparecchi al di sopra del flusso di carico o nel flusso di carico stesso ed assicurare che rilevino la superficie del prodotto e non il prodotto che viene caricato.

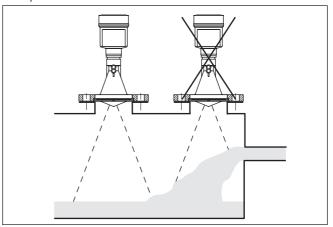


Figura 8: Montaggio del sensore radar in presenza del flusso di carico

Tronchetto in caso di sulato

L'estremità dell'antenna dovrebbe preferibilmente sporgere almeno sistema di antenna incap- 10 mm (0.4 in) oltre la base del tronchetto.

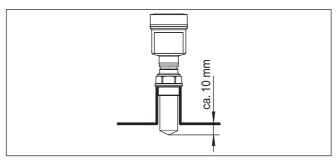


Figura 9: Montaggio su tronchetto consigliato

Se le caratteristiche di riflessione del prodotto sono buone potete installare il VEGAPULS 61 anche su tronchetti più lunghi dell'antenna. Nella seguente illustrazione sono indicati i valori orientativi delle lunghezze del tronchetto, la cui estremità deve essere in questo caso liscia e levigata, se possibile addirittura arrotondata. Eseguite anche una soppressione dei segnali di disturbo.

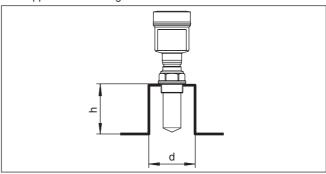


Figura 10: Massime dimensioni del tronchetto possibili

La tabella sottostante indica le massime lunghezze h del tronchetto, in base al diametro d.

Diametro d del tronchetto		Lunghezza h del tronchetto	
40 mm	11/2"	≤ 100 mm	≤ 3.9 in
50 mm	2"	≤ 150 mm	≤ 5.9 in
80 mm	3"	≤ 200 mm	≤ 7.9 in
100 mm	4"	≤ 300 mm	≤ 11.8 in
150 mm	6"	≤ 400 mm	≤ 15.8 in

Tronchetto per antenna a cono in resina

Per il montaggio del VEGAPULS 61 su un tronchetto è disponibile un'apposita flangia di raccordo per DN 80 (ASME 3" oppure JIS 80) e un'idonea flangia d'adattamento.

Con le differenti custodie di resina, di alluminio ad una camera e d'acciaio speciale, la flangia di raccordo può essere collegata diettamente alla custodia. Con custodia di alluminio a due camere è necessario

stabilire nell'ordine il tipo di montaggio, poiché è impossibile eseguirlo in un secondo tempo.

Informazione:

Il tronchetto deve essere possibilmente corto e con l'estremità arrotondata. In questo modo si riducono le riflessioni di disturbo causate dal tronchetto.

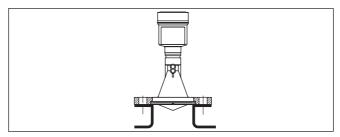
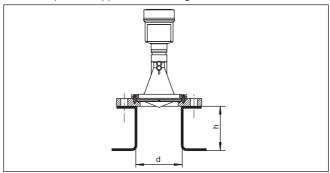



Figura 11: Montaggio su tronchetto consigliato

Se le caratteristiche di riflessione del prodotto sono buone potete montare il VEGAPULS 61 anche su tronchetti più lunghi. Trovate i valori orientativi delle altezze del tronchetto nella figura successiva. Procedete poi alla soppressione dei segnali di disturbo.

Queste tabelle indicano le massime lunghezze h del tronchetto, in base al diametro d.

Diametro d del tronchetto		Lunghezza h del tronchetto	
80 mm	3"	≤ 300 mm	≤ 11.8 in
100 mm	4"	≤ 400 mm	≤ 15.8 in
150 mm	6"	≤ 500 mm	≤ 19.7 in

Diametro d del tronchetto	Lunghezza h del tronchetto
3"	≤ 11.8 in
4"	≤ 15.8 in
6"	≤ 19.7 in

Orientamento del sensore Per ottenere risultati ottimali di misura, orientate il sensore sui liquidi in modo che risulti il più possibile perpendicolare alla superficie del prodotto.

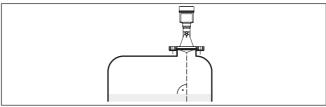


Figura 13: Orientamento su liquidi

Strutture interne al serbatoio

Montare il sensore radar in modo tale da impedire ai segnali radar d'incrociare strutture interne al serbatoio.

Strutture interne al serbatojo, per es. scale, interruttori di livello, serpentine di riscaldamento, rinforzi, ecc. generano spesso echi di disturbo che coprono l'eco utile. Accertatevi durante la progettazione del vostro punto di misura che il percorso dei segnali radar verso il prodotto sia libero da ostacoli.

In presenza di strutture interne al serbatoio è opportuno eseguire una soppressione dei segnali di disturbo.

Se grosse strutture interne al serbatoio, come rinforzi o tiranti, generano echi di disturbo, potete adottare ulteriori provvedimenti per attenuarli. Schermate le strutture con piccoli pannelli metallici disposti obliquamente, per deviare i segnali radar e impedire una riflessione di disturbo diretta.

Figura 14: Copertura di profili piatti mediante deflettori

agitatori

Durante il funzionamento di agitatori all'interno del serbatoio è opportuno eseguire una soppressione del segnale di disturbo. Le riflessioni di disturbo dell'agitatore saranno così memorizzate nelle diverse posizioni.

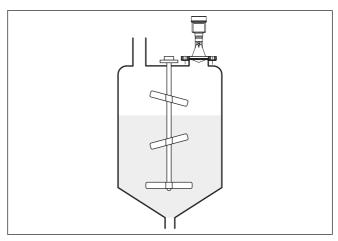


Figura 15: agitatori

Formazione di schiuma

Durante operazioni di carico del prodotto, nel caso di funzionamento di agitatori o di altre condizioni di processo, può formarsi sulla superficie del prodotto uno strato compatto di schiuma, che attenua fortemente il segnale d'emissione.

Se la schiuma provoca errori di misura, usate l'antenna radar più grande possibile, l'elettronica con sensibilità elevata o sensori radar a bassa frequenza (banca C).

In alternativa potete usare sensori a microonde guidate, che non sono influenzati da formazioni di schiuma e sono particolarmente idonei a queste condizioni operative.

4.5 Configurazioni di misura - Tubi

Misura nel tubo di calma

Eseguendo la misura in un tubo di calma nel serbatoio si escludono influssi di strutture interne al serbatoio e turbolenze. Con questo accorgimento è possibile misurare prodotti con bassi valori della costante dielettrica (valore $\varepsilon_r \le 1,6$).

Per l'esecuzione della misura nel tubo di calma prestare attenzione alle sequenti avvertenze e rappresentazioni.

Informazione:

La misura in tubi di calma è sconsigliata per prodotti fortemente adesivi.

Struttura del tubo di calma

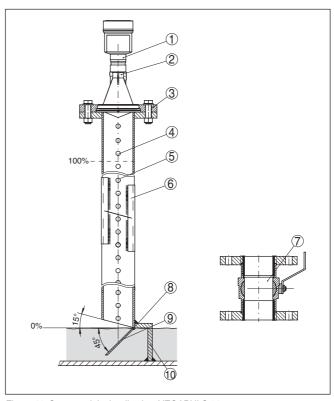


Figura 16: Struttura del tubo di calma VEGAPULS 61

- 1 Sensore radar
- 2 Contrassegno della polarizzazione
- 3 Filettatura e/o flangia dell'apparecchio
- 4 Foro di sfiato
- 5 Fori
- 6 Saldatura con profili a U
- 7 Valvola a sfera con passaggio integrale
- 8 Estremità del tubo di calma
- 9 Lamiera di riflessione
- 10 Fissaggio del tubo di calma

Prolungamento del tubo di calma

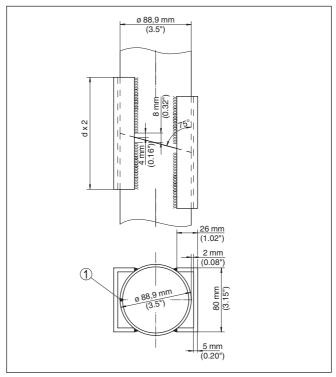


Figura 17: Saldatura per prolungamento del tubo di calma per diversi esempi di diametro

1 Posizione del cordone di saldatura per tubi saldati longitudinalmente

Tubo di calma: avvertenze e requisiti

Tubo di calma: avvertenze Avvertenze per l'orientamento della polarizzazione

- Prestare attenzione al contrassegno della polarizzazione sul sensore
- In caso di esecuzioni filettate il contrassegno è situato sul dado esagonale, nelle esecuzioni a flangia si trova tra i due fori della flangia
- Il contrassegno deve essere allineato con i fori del tubo di calma

Avvertenze relative alla misura

- Il punto 100 % deve trovarsi sotto il foro di sfiato superiore e il bordo dell'antenna
- Il punto 0 % corrisponde all'estremità del tubo di calma
- Durante la parametrizzazione occorre selezionare "Applicazione tubo di livello" e immettere il diametro del tubo, per compensare errori derivanti dallo sfasamento del tempo di andata e ritorno
- E' opportuno, anche se non indispensabile, eseguire una soppressione dei segnali di disturbo a sensore installato
- E' possibile eseguire la misura attraverso una valvola a sfera con passaggio integrale

Requisiti costruttivi

- Materiale metallico, tubo internamente liscio
- Preferibilmente tubo di acciaio trafilato o con saldatura longitudinale
- Il cordone di saldatura deve essere possibilmente orizzontale e trovarsi in asse con i fori
- Le flange devono essere saldate sul tubo secondo l'orientamento della polarizzazione
- In caso d'impiego di una valvola sferica, allineare i punti di collegamento sui lati interni e fissarli in modo che coincidano perfettamente.
- Larghezza della fessura fra i raccordi ≤ 0,1 mm
- I tubi di calma devono raggiungere il minimo livello di misura desiderato, poiché è possibile misurare solo all'interno del tubo
- Diametro dei fori ≤ 5 mm, numero a piacere, su un solo lato o passanti
- Il diametro dell'antenna del sensore deve corrispondere il più possibile al diametro interno del tubo
- Il diametro deve essere invariato per tutta la lunghezza

Avvertenze per il prolungamento del tubo di calma

- Le estremità dei tubi di prolungamento devono essere tagliate inclinate e vanno sovrapposte perfettamente allineate
- Unione tramite saldatura con profili a U esterni (secondo la figura in alto). Lunghezza dei profili a U come minimo pari al doppio del diametro del tubo.
- Non saldare attraverso la parete del tubo di calma, che deve restare internamente liscio. Se inavvertitamente le saldature penetrano all'interno è necessario rimuovere accurata\mente asperità e cordoni di saldatura, che provocherebbero forti echi di disturbo e favorirebbero adesioni di prodotto
- Non è consigliabile un prolungamento tramite frange a collare o raccordi per tubi.

Misura nel bypass

Un'alternativa alla misura nel tubo di calma è la misura in un tubo bypass esterno.

Struttura del bypass

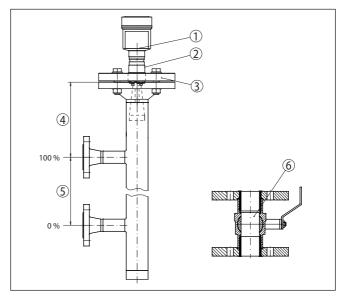


Figura 18: Struttura del bypass

- 1 Sensore radar
- 2 Contrassegno della polarizzazione
- 3 Flangia dell'apparecchio
- 4 Distanza fra piano di riferimento del sensore e tubo di raccordo superiore
- 5 Distanza dei tubi di raccordo
- 6 Valvola a sfera con passaggio integrale

Bypass: avvertenze e requisiti

Avvertenze per l'orientamento della polarizzazione

- Prestare attenzione al contrassegno della polarizzazione sul sensore
- In caso di esecuzioni filettate il contrassegno è situato sul dado esagonale, nelle esecuzioni a flangia si trova tra i due fori della flangia
- Il contrassegno deve essere allineato con i raccordi di collegamento al serbatoio

Avvertenze relative alla misura

- Il punto 100% non può trovarsi sopra il tubo superiore di collegamento al serbatoio
- Il punto 0% non può trovarsi sotto il tubo inferiore di collegamento al serbatoio
- Distanza minima fra piano di riferimento del sensore e spigolo superiore del tubo superiore di collegamento > 300 mm
- Durante la parametrizzazione occorre selezionare "Applicazione tubo di livello" e immettere il diametro del tubo, per compensare errori derivanti dallo sfasamento del tempo di andata e ritorno
- E' opportuno, anche se non indispensabile, eseguire una soppressione dei segnali di disturbo a sensore installato

 E' possibile eseguire la misura attraverso una valvola a sfera con passaggio integrale

Caratteristiche costruttive del tubo bypass:

- Materiale metallico, tubo internamente liscio
- Nel caso di tubi internamente molto ruvidi, inserire un altro tubo all'interno del tubo bypass o usare un sensore radar non antenna a tubo
- Le flange devono essere saldate sul tubo secondo l'orientamento della polarizzazione
- Larghezza della fessura fra i raccordi ≤ 0,1 mm, per es. nel caso di utilizzo di una valvola a sfera o di flange intermedie con singoli segmenti di tubo
- Il diametro dell'antenna del sensore deve corrispondere il più possibile al diametro interno del tubo
- Il diametro deve essere invariato per tutta la lunghezza

4.6 Configurazioni di misura - Portata

Misura di portata con stramazzo rettangolare I successivi brevi esempi forniscono alcune indicazioni introduttive sulla misura di portata. Dettagliati dati di progettazione sono forniti dal costruttore dei canali e rintracciabili nella letteratura specializzata.

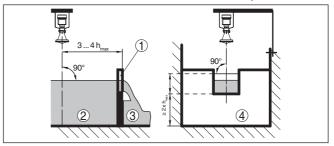


Figura 19: Misura di portata con stramazzo rettangolare: d_{min.} = distanza minima del sensore (vedi capitolo "Dati tecnici"); h_{max.} = max. riempimento dello stramazzo rettangolare

- 1 Diaframma dello stramazzo (vista laterale)
- 2 Acqua a monte
- 3 Acqua a valle
- 4 Diaframma dello stramazzo (vista da acqua a valle)

Rispettate di norma i seguenti punti:

- Installazione del sensore sul lato acqua a monte
- Montaggio al centro del canale e perpendicolare alla superficie del liquido
- Distanza dal diaframma dello stramazzo
- Distanza dall'apertura del diaframma sopra il fondo del serbatoio
- Distanza minima dell'apertura del diaframma dall'acqua a valle
- Distanza minima del sensore dalla max. altezza d'invaso

Misura di portata con tubo Khafagi-Venturi

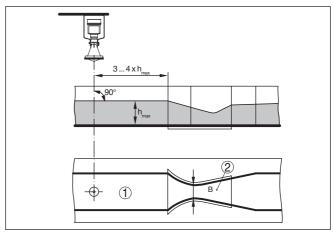


Figura 20: Misura di portata con canale Khafagi-Venturi: $h_{max.} = max$. riempimento del canale; B = massima strozzatura del canale

- 1 Posizione del sensore
- 2 Canale Venturi

Rispettate di norma i seguenti punti:

- Installazione del sensore lato di presa
- Montaggio al centro del canale e perpendicolare alla superficie del liquido
- Distanza dal tubo Venturi
- Distanza minima del sensore dalla max. altezza d'invaso

5 Collegamento all'alimentazione in tensione

Preparazione del collegamento

Normative di sicurezza

Rispettare le seguenti normative di sicurezza:

- Il collegamento elettrico può essere eseguito esclusivamente da personale qualificato adeguatamente addestrato e autorizzato dal gestore dell'impianto.
- Se si temono sovratensioni, occorre installare scaricatori di sovratensione

Attenzione:

Eseguire il collegamento unicamente in assenza di tensione.

Alimentazione in tensione L'alimentazione in tensione e il segnale in corrente passano attraverso lo stesso cavo di collegamento bifilare. L'alimentazione in tensione può variare a seconda della versione dell'apparecchio.

> I dati relativi all'alimentazione in tensione sono contenuti nel capitolo "Dati tecnici".

Assicurare una separazione sicura del circuito di alimentazione dai circuiti della corrente di rete conformemente a DIN EN 61140. VDF 0140-1.

Alimentare l'apparecchio tramite un circuito elettrico ad energia limitata secondo IEC 61010-1, per es. tramite un alimentatore di Classe 2.

Tener conto delle seguenti ulteriori influenze per la tensione di servizio:

- Minore tensione in uscita dell'alimentatore a carico nominale (per es. con una corrente del sensore di 20,5 mA o 22 mA in caso di segnalazione di disturbo)
- Influenza di altri apparecchi nel circuito elettrico (vedi valori di carico al capitolo "Dati tecnici")

Cavo di collegamento

Il collegamento dell'apparecchio si esegue con un normale cavo a due conduttori senza schermo. Il cavo schermato deve essere usato se si prevedono induzioni elettromagnetiche superiori ai valori di prova della EN 61326-1 per settori industriali.

Assicurarsi che la resistenza alla temperatura e la sicurezza antincendio del cavo utilizzato siano adeguate alla massima temperatura ambiente prevista per l'applicazione.

Per gli apparecchi con custodia e pressacavo, utilizzare cavi a sezione circolare. Impiegare un pressacavo adeguato al diametro del cavo per garantirne la tenuta (grado di protezione IP).

Nella funzione HART-multipunto raccomandiamo di usare un cavo schermato.

Pressacavi

Filettatura metrica

Nelle custodie degli apparecchi con filettature metriche, i pressacavi sono avvitati in laboratorio e per il trasporto sono chiusi con tappi di plastica di protezione.

I tappi di protezione vanno rimossi prima dell'allacciamento elettrico.

Filettatura NPT

Nelle custodie degli apparecchi con filetti NPT autosigillanti, i collegamenti a vite dei cavi non possono essere avvitati in laboratorio. Per tale ragione, per il trasporto le aperture libere delle entrate dei cavi sono chiuse con cappucci di protezione dalla polvere rossi.

Prima della messa in servizio, questi cappucci di protezione vanno sostituiti con pressacavi omologati o eventualmente con tappi ciechi idonei

Nel caso di custodia di resina, avvitare il pressacavo NPT o il conduit di acciaio senza usare grasso nel raccordo filettato.

Massima coppia di serraggio per tutte le custodie vedi capitolo "Dati tecnici".

Schermatura del cavo e collegamento di terra

Se è necessario usare un cavo schermato, consigliamo di collegare al potenziale di terra le due estremità dello schermo del cavo. Nel sensore lo schermo va collegato direttamente al morsetto interno di terra. Il morsetto esterno di terra nella custodia deve essere collegato a bassa impedenza al potenziale di terra.

Negli impianti Ex il collegamento a terra si esegue conformemente alle normative d'installazione.

5.2 Collegamento

Tecnica di collegamento

Il collegamento dell'alimentazione in tensione e dell'uscita del segnale si esegue con morsetti a molla situati nella custodia.

Il collegamento al tastierino di taratura con diplay e/o all'adattatore d'interfaccia si esegue con i terminali di contatto situati nella custodia.

Informazione:

La morsettiera è a innesto e può essere rimossa dall'elettronica. È sufficiente sollevarla con un piccolo cacciavite ed estrarla. Durante il reinserimento udirete lo scatto.

Operazioni di collegamento

Procedere nel modo seguente:

- Svitare il coperchio della custodia.
- Rimuovere l'eventuale tastierino di taratura con display, ruotando leggermente verso sinistra
- 3. Allentare il dado per raccordi del pressacavo ed estrarre il tappo
- 4. Togliere la guaina del cavo di collegamento per ca. 10 cm (4 in), denudare le estremità dei conduttori per ca. 1 cm (0.4 in).
- 5. Inserire il cavo nel sensore attraverso il pressacavo

Figura 21: Operazioni di collegamento 5 e 6

- 1 Custodia a una camera
- 2 Custodia a due camere
- Inserire le estremità dei conduttori nei morsetti secondo lo schema di collegamento

Informazione:

Conduttori fissi e flessibili con guaina saranno inseriti direttamente nelle aperture dei morsetti. Per i conduttori flessibili senza guaina, premere sulla parte superiore del morsetto con un piccolo cacciavite per liberare l'apertura. I morsetti si richiuderanno appena si risolleva il cacciavite.

Ulteriori informazioni in merito alla max. sezione dei conduttori sono contenute nel capitolo "Dati tecnici - Dati elettromeccanici".

- 7. Verificare che i conduttori siano ben fissati, tirando leggermente
- 8. Collegare la schermatura al morsetto interno di terra, connettere il morsetto esterno di terra al collegamento equipotenziale.
- 9. Serrare a fondo il dado di raccordo del pressacavo. L'anello di tenuta deve circondare perfettamente il cavo
- 10. Reinserire l'eventuale tastierino di taratura con display
- Avvitare il coperchio della custodia

A questo punto l'allacciamento elettrico è completato.

5.3 Schema di collegamento custodia a una camera

La successiva illustrazione si riferisce alle esecuzioni non Ex e alle esecuzioni Ex-ia.

Vano dell'elettronica e di connessione

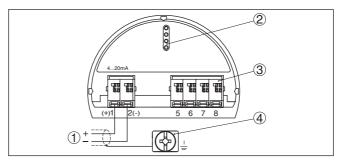


Figura 22: Vano dell'elettronica e di connessione - custodia a una camera

- 1 Alimentazione in tensione, uscita del segnale
- 2 Per tastierino di taratura con display e/o adattatore d'interfaccia
- 3 Per unità esterna d'indicazione e di calibrazione
- 4 Morsetto di terra per il collegamento dello schermo del cavo

5.4 Schema di allacciamento custodia a due camere

Le successive illustrazioni si riferiscono alle esecuzioni non Ex e alle esecuzioni Ex-ia.

Vano dell'elettronica

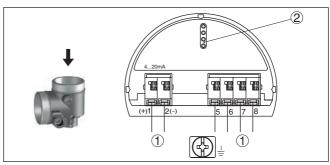


Figura 23: Vano dell'elettronica - custodia a due camere

- 1 Connessione interna verso il vano di connessione
- 2 Per tastierino di taratura con display e/o adattatore d'interfaccia

Vano di connessione

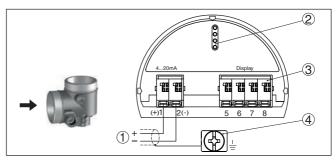


Figura 24: Vano di allacciamento - custodia a due camere

- 1 Alimentazione in tensione, uscita del segnale
- 2 Per tastierino di taratura con display e/o adattatore d'interfaccia
- 3 Per unità esterna d'indicazione e di calibrazione
- 4 Morsetto di terra per il collegamento dello schermo del cavo

Vano di connessione modulo radio PLICSMO-BILE 81

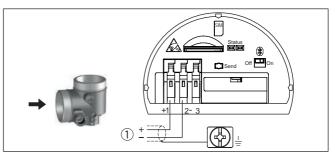


Figura 25: Vano di connessione - modulo radio PLICSMOBILE 81

1 Alimentazione in tensione

Istruzioni dettagliate per il collegamento sono contenute nelle Istruzioni d'uso "PLICSMOBILE".

5.5 Schema di allacciamento custodia a due camere Ex d ia

Vano dell'elettronica

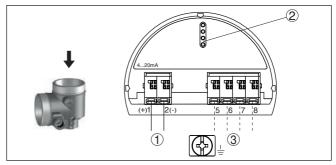


Figura 26: Vano dell'elettronica - custodia a due camere Ex-d-ia

- 1 Connessione interna verso il vano di connessione
- 2 Per tastierino di taratura con display e/o adattatore d'interfaccia
- 3 Collegamento interno verso il connettore a spina per l'unità esterna d'indicazione e di calibrazione (opzionale)

•

Avviso:

In caso di utilizzo di un apparecchio Ex-d-ia non è possibile il funzionamento HART Multidrop.

Vano di connessione

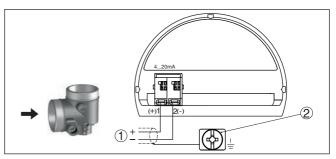


Figura 27: Vano di allacciamento - custodia a due camere Ex-d-ia

- 1 Alimentazione in tensione, uscita del segnale
- 2 Morsetto di terra per il collegamento dello schermo del cavo

Connettore M12 x 1 per unità d'indicazione e calibrazione esterna

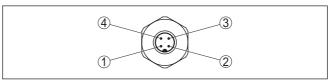


Figura 28: Vista sul connettore a spina

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Pin di contatto	Colore cavo di collega- mento del sensore	Morsetto unità elet- tronica
Pin 1	Colore marrone	5
Pin 2	Colore bianco	6
Pin 3	Colore blu	7
Pin 4	Colore nero	8

5.6 Custodia a due camere con adattatore VEGADIS

Vano dell'elettronica

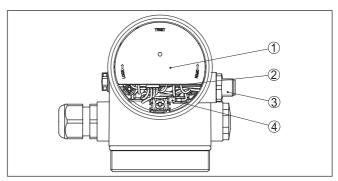


Figura 29: Vista sul vano dell'elettronica con adattatore VEGADIS per il collegamento dell'unità d'indicazione e di calibrazione esterna

- 1 Adattatore per VEGADIS
- 2 Collegamento a spina interno
- 3 Connettore a spina M12 x 1

Assegnazioni del connettore a spina

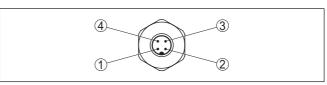


Figura 30: Vista sul connettore a spina M12 x 1

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Pin di contatto	Colore cavo di collega- mento del sensore	Morsetto unità elet- tronica
Pin 1	Colore marrone	5
Pin 2	Colore bianco	6
Pin 3	Colore blu	7
Pin 4	Colore nero	8

Assegnazione dei conduttori del cavo di collegamento

5.7 Schema elettrico - Esecuzione IP 66/IP 68, 1 bar

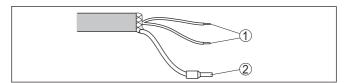


Figura 31: Assegnazione dei conduttori del cavo di connessione collegato fisso

- 1 Marrone (+) e blu (-) verso l'alimentazione in tensione e/o verso il sistema d'elaborazione
- 2 Schermatura

5.8 Fase d'avviamento

Dopo il collegamento dell'apparecchio all'alimentazione in tensione e/o dopo il ristabilimento di tensione l'apparecchio svolge per ca. 30 s un autotest, eseguendo le seguenti verifiche:

- Controllo interno dell'elettronica
- Visualizzazione su display o PC di tipo di apparecchio, versione hardware e software, nome del punto di misura
- Visualizzazione su display o PC del messaggio di stato "F 105 Rilevamento valore di misura"
- Il segnale d'uscita salta brevemente sulla corrente di disturbo impostata

Appena trovato un valore plausibile, sarà emessa la relativa corrente sulla linea del segnale. Il valore corrisponde al livello attuale e alle impostazioni eseguite, per es. alla taratura di laboratorio.

6 Messa in servizio con il tastierino di taratura con display

6.1 Installare il tastierino di taratura con display

Il tastierino di taratura con display può essere inserito nel sensore e rimosso in qualsiasi momento. Si può scegliere tra quattro posizioni spostate di 90°. L'operazione non richiede un'interruzione dell'alimentazione in tensione.

Procedere nel modo seguente:

- 1. Svitare il coperchio della custodia
- Piazzare il tastierino di taratura con display sull'unità elettronica nella posizione desiderata e ruotarlo verso destra finché scatta in posizione
- Avvitare saldamente il coperchio della custodia con finestrella Per rimuoverlo procedete nella sequenza inversa.

Il tastierino di taratura con display è alimentato dal sensore, non occorre un ulteriore collegamento.

Figura 32: Inserimento del tastierino di taratura con display nel vano dell'elettronica in caso di custodia ad una camera

Figura 33: Inserimento del tastierino di taratura con display in caso di custodia a due camere

- 1 Nel vano dell'elettronica
- 2 Nel vano di connessione

ĭ

Avviso

Se si desidera corredare l'apparecchio di un tastierino di taratura con display e disporre così dell'indicazione del valore di misura, è necessario usare un coperchio più alto con finestrella.

6.2 Sistema operativo



Figura 34: Elementi d'indicazione e di servizio

- 1 Display LC
- 2 Tasti di servizio

Funzioni dei tasti

• Tasto [OK]:

- Passare alla panoramica dei menu
- Confermare il menu selezionato
- Editare i parametri
- Salvare il valore

• Tasto [->]:

- Modificare la rappresentazione del valore di misura
- Selezionare una voce della lista

- Selezionare voci di menu nella messa in esercizio rapida
- Selezionare la posizione da modificare
- Tasto [+]:
 - Modificare il valore di un parametro
- Tasto [ESC]:
 - Interrompere l'immissione
 - Passare al menu superiore

Sistema di calibrazione - azionamento diretto dei tasti

Il comando dell'apparecchio avviene tramite i quattro tasti del tastierino di taratura con display. Sul display a cristalli liquidi vengono visualizzate le singole voci di menu. Per le funzioni dei singoli tasti si veda la descrizione precedente.

Sistema di calibrazione - azionamento dei tasti tramite penna magnetica

In caso di esecuzione Bluetooth del tastierino di taratura con display, l'apparecchio può essere calibrato utilizzando una penna magnetica che aziona i quattro tasti attraverso il coperchio chiuso con finestrella della custodia del sensore.

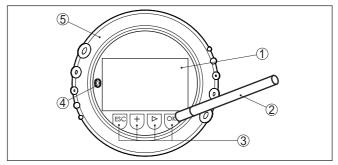


Figura 35: Elementi di visualizzazione e calibrazione - con calibrazione tramite penna magnetica

- 1 Display LC
- 2 Penna magnetica
- 3 Tasti di servizio
- 4 Simbolo Bluetooth
- 5 Coperchio con finestrella

Funzioni temporali

Azionando una volta i tasti [+] e [->] il valore cambia di una cifra/il cursore si sposta di un punto. Tenendo premuti i tasti per oltre 1 s il cambiamento è progressivo.

Azionando contemporaneamente i tasti [OK] ed [ESC] per più di 5 s si ritorna al menu base e la lingua dei menu passa a "Inglese".

Trascorsi ca. 60 minuti dall'ultimo azionamento di un tasto, scatta un ritorno automatico all'indicazione del valore di misura. I valori non ancora confermati con *[OK]* vanno perduti.

6.3 Visualizzazione del valore di misura - Selezione lingua nazionale

Visualizzazione del valore di misura


Con il tasto [->] è possibile passare da una all'altra delle tre diverse modalità di visualizzazione.

Nella prima visualizzazione compare il valore di misura selezionato con caratteri grandi.

Nella seconda visualizzazione compaiono il valore di misura selezionato e una relativa rappresentazione tramite diagramma a barre.

Nella terza visualizzazione compaiono il valore di misura selezionato e un secondo valore selezionabile, per es. la temperatura dell'elettronica.

Con il tasto "**OK**", in occasione della prima messa in servizio dell'apparecchio impostato in laboratorio, si passa al menu di selezione "Lingua nazionale".

Selezione della lingua nazionale

Questa voce di menu serve per la selezione della lingua nazionale per l'ulteriore parametrizzazione. Una modifica della selezione è possibile alla voce di menu "*Messa in servizio - Display, lingua del menu*".

Con il tasto "OK" si passa al menu principale.

6.4 Parametrizzazione

Con la parametrizzazione si adegua l'apparecchio alle condizioni d'impiego. La parametrizzazione si esegue mediante il menu di servizio.

Menu principale

Il menu principale è suddiviso in cinque sezioni con la seguente funzionalità:

Messa in servizio: impostazioni per es. relative al nome del punto di misura, al prodotto, all'applicazione, al serbatoio, alla taratura, all'uscita del segnale

Display: impostazione per es. relative alla lingua, all'indicazione del valore di misura, all'illuminazione

Diagnostica: informazioni relative per es. allo stato dell'apparecchio, all'indicatore di scarto (valore min/max), alla sicurezza di misura, alla simulazione, alla curva d'eco

Ulteriori impostazioni: Unità dell'apparecchio, Soppressione del segnale di disturbo, Curva di linearizzazione, Reset, Data/Ora, Reset, Funzione di copiatura

Info: denominazione dell'apparecchio, versione hardware e software, data di calibrazione, caratteristiche dell'apparecchio

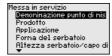
Informazione:

In queste Istruzioni d'uso sono descritti i parametri specifici dell'apparecchio nelle voci di menu "Messa in servizio", "Diagnostica" e "Ulteriori impostazioni". I parametri generali in queste voci di menu sono descritti nelle Istruzioni d'uso "Tastierino di taratura con display".

Le Istruzioni d'uso "Tastierino di taratura con display" contengono anche la descrizione delle voci di menu "Display" e "Info".

Per configurare in maniera ottimale la misura, selezionare in successione le singole voci di sottomenu del menu principale "Messa in servizio" e impostare i parametri riferiti alla propria applicazione. La procedura è descritta qui di seguito.

Messa in servizio - Denominazione punto di misura


Nella voce di menu "TAG sensore" si immette una denominazione del punto di misura di dodici cifre.

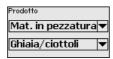
In questo modo si può assegnare al sensore una chiara denominazione, per es. il nome del punto di misura, del serbatoio o del prodotto. Nei sistemi digitali e nella documentazione di grossi impianti va impostata una diversa denominazione per ogni punto di misura per identificarlo poi con sicurezza.

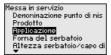
Si possono utilizzare i seguenti caratteri:

- lettere da A ... Z
- cifre da 0 a 9
- caratteri speciali +. -. /. -

Messa in servizio - Prodotto

Ogni prodotto possiede particolari caratteristiche di riflessione. Per quanto riguarda i liquidi fattori di disturbo possono essere le perturbazioni tipiche delle superfici agitate e la formazione di schiuma. Nel caso di solidi in pezzatura può trattarsi di formazioni polverose, coni di materiale e di echi provenienti dalle pareti del serbatoio.

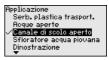

Per adeguare il sensore alle differenti condizioni di misura è opportuno selezionare dapprima in questa voce menù "Liquidi" o "Mat. in pezzatura".


Grazie a questa selezione si ottiene l'ottimale adeguamento del sensore al prodotto e la sicurezza di misura, soprattutto su prodotti con cattive caratteristiche di riflessione.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Applicazione

La misura può essere influenzata non solo dal prodotto, ma anche dall'applicazione e dal luogo d'impiego.


Questa voce menù consente di adeguare il sensore alle condizioni di misura. Le possibili impostazioni dipendono dalla selezione effettuata "Liquidi" o "Mat. in pezzatura " sotto "Prodotto".

Per "Liquidi" sono disponibili le sequenti selezioni:

La selezione "Tubo di livello" apre una nuova finestra, nella quale immettere il diametro interno del tubo di livello utilizzato.

Di seguito sono descritte le caratteristiche delle applicazioni e del sensore impiegato per la misura.

i

Avviso:

L'impiego dell'apparecchio nelle seguenti applicazioni è eventualmente soggetto a limitazioni nazionali relative all'omologazione radiotecnica (v. capitolo "*Criteri di sicurezza*"):

- Serbatoio di resina
- Serbatoio mobile di resina
- Acque aperte
- Canale aperto
- Stramazzo acque meteoriche

Serbatojo di stoccaggio

- Struttura: grande volume, cilindrico in piedi, rotondo disteso
- Velocità prodotto: carico e scarico lento
- Condizioni di processo e di misura:
 - Formazione di condensa

- Superficie del prodotto calma
- Elevate esigenze di precisione di misura
- · Caratteristiche del sensore:
 - Ridotta sensibilità a echi di disturbo sporadici
 - Valori di misura stabili e sicuri tramite calcolo del valore medio
 - Elevata precisione di misura
 - Non è richiesto un tempo di reazione breve del sensore

Serbatoio di stoccaggio con circolazione del prodotto

- Struttura: grande volume, cilindrico in piedi, rotondo disteso
- Velocità prodotto: carico e scarico lento
- Installazioni interne: agitatore piccolo montato lateralmente oppure grande montato dall'alto
- Condizioni di processo e di misura:
 - Superficie del prodotto relativamente calma
 - Elevate esigenze di precisione di misura
 - Formazione di condensa
 - Ridotta formazione di schiuma
 - Possibile sovrappieno
- Caratteristiche del sensore:
 - Ridotta sensibilità a echi di disturbo sporadici
 - Valori di misura stabili e sicuri tramite calcolo del valore medio
 - Elevata precisione di misura poiché non impostato per velocità max.
 - Soppressione dei segnali di disturbo consigliata

Serbatoio di stoccaggio su navi

- Velocità prodotto: carico e scarico lento
- Serbatoio:
 - Strutture sul fondo (rinforzi, serpentine di riscaldamento)
 - Tronchetto alto 200 ... 500 mm, anche con diametro grande
- Condizioni di processo e di misura:
 - Formazione di condensa, sedimentazioni di prodotto causati dal movimento
 - Massima esigenza di precisione di misura a partire da 95%
- · Caratteristiche del sensore:
 - Ridotta sensibilità a echi di disturbo sporadici
 - Valori di misura stabili e sicuri tramite calcolo del valore medio.
 - Elevata precisione di misura
 - Soppressione dei segnali di disturbo necessaria

Serbatoio con agitatore:

- Struttura: possibili serbatoi di ogni grandezza
- Velocità prodotto:
 - Possibilità di carico da rapido fino a lento
 - Il serbatoio è caricato e scaricato molto velocemente
- Serbatoio:
 - Tronchetto a disposizione
 - Asta agitatore grande di metallo
 - Frangiflutti, serpentine di riscaldamento
- Condizioni di processo e di misura:
 - Formazione di condensa, sedimentazioni di prodotto causati dal movimento

- Forte formazione di trombe d'aria
- Superficie molto mossa, formazione di schiuma
- Caratteristiche del sensore:
 - Elevata velocità di misura grazie al ridotto calcolo del valore
 - Echi sporadici vengono soppressi

Serbatoio di dosaggio:

- Struttura: possibili serbatoi di ogni grandezza
- Velocità prodotto:
 - Carico e scarico molto rapidi
 - Il serbatoio è caricato e scaricato molto velocemente
- Serbatoio: installazione in poco spazio
- Condizioni di processo e di misura:
 - Formazione di condensa, depositi di prodotto sull'antenna
 - Formazione di schiuma
- Caratteristiche del sensore:
 - Velocità di misura ottimizzata grazie alla quasi totale esclusione del calcolo del valore medio
 - Echi sporadici vengono soppressi
 - Soppressione dei segnali di disturbo consigliata

Tubo di livello

- Velocità prodotto: carico e scarico molto rapidi
- Serbatoio:
 - Foro di sfiato
 - Attacchi come flange, punti di saldatura
 - Rinvio del tempo di esecuzione nel tubo
- Condizioni di processo e di misura:
 - Formazione di condensa
 - Adesioni
- Caratteristiche del sensore:
 - Velocità di misura ottimizzata grazie al ridotto calcolo del valore
 - L'immissione del diametro interno del tubo tiene conto della variazione del tempo di andata e ritorno dell'impulso
 - Ridotta sensibilità di rilevamento dell'eco

Bypass:

- Velocità prodotto:
 - Con tubi di bypass sia corti che lunghi è possibile il carico da veloce fino a lento
 - Spesso il livello si mantiene per mezzo di una regolazione
- Serbatoio:
 - Ingressi ed uscite laterali
 - Attacchi come flange, punti di saldatura
 - Rinvio del tempo di esecuzione nel tubo
- Condizioni di processo e di misura:
 - Formazione di condensa
 - Adesioni
 - È possibile separare olio ed acqua
 - È possibile il sovrappieno fino nell'antenna
- Caratteristiche del sensore:

- Velocità di misura ottimizzata grazie al ridotto calcolo del valore medio
- L'immissione del diametro interno del tubo tiene conto della variazione del tempo di andata e ritorno dell'impulso
- Ridotta sensibilità di rilevamento dell'eco
- Soppressione dei segnali di disturbo consigliata

Serbatoio di resina:

- Serbatoio:
 - Misura aggiunta e/o inserita fissa
 - Misura attraverso la copertura del serbatoio a seconda dell'applicazione
 - A serbatoio vuoto la misura può andare attraverso il fondo
- Condizioni di processo e di misura:
 - Formazione di condensa sulla copertura di resina
 - Sugli impianti situati all'esterno possono esserci depositi di acqua o neve sulla copertura
- Caratteristiche del sensore:
 - Si tiene conto anche dei segnali di disturbo al di fuori del serbatojo
 - Soppressione dei segnali di disturbo consigliata

Serbatoio mobile di resina:

- Serbatoio:
 - Diverso materiale e spessore
 - Misura attraverso la copertura del serbatojo
- Condizioni di processo e di misura:
 - Sbalzo del valore di misura alla sostituzione del serbatoio
- Caratteristiche del sensore:
 - Adeguamento rapido alle mutate condizioni di riflessione dovute alla sostituzione del serbatoio
 - Soppressione dei segnali di disturbo necessaria

Acque aperte:

- Velocità di modifica dell'altezza: modifica d'altezza lenta
- · Condizioni di processo e di misura:
 - Grande distanza tra il sensore e la superficie dell'acqua
 - Forte attenuazione del segnale d'uscita a causa della formazione di onde
 - Possibile formazione di ghiaccio e condensa sull'antenna
 - Ragni ed insetti nidificano nelle antenne
 - Talvolta ci sono detriti o animali sulla superficie dell'acqua
- Caratteristiche del sensore:
 - Valori di misura stabili e sicuri tramite elevato calcolo del valore medio
 - Insensibile nella zona iniziale

Canale aperto:

- Velocità di modifica dell'altezza: modifica d'altezza lenta
- Condizioni di processo e di misura:
 - Possibile formazione di ghiaccio e condensa sull'antenna
 - Ragni ed insetti nidificano nelle antenne
 - Superficie dell'acqua calma

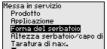
- Necessaria una misura esatta.
- Normalmente distanze dalla superficie dell'acqua relativamente grandi
- Caratteristiche del sensore:
 - Valori di misura stabili e sicuri tramite elevato calcolo del valore
 - Insensibile nella zona iniziale

Stramazzo acque meteoriche:

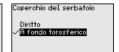
- Velocità di modifica dell'altezza: modifica d'altezza lenta
- Condizioni di processo e di misura:
 - Possibile formazione di ghiaccio e condensa sull'antenna
 - Ragni ed insetti nidificano nelle antenne
 - Superficie dell'acqua agitata
 - Possibile sensore di allagamento
- Caratteristiche del sensore:
 - Valori di misura stabili e sicuri tramite elevato calcolo del valore medio
 - Insensibile nella zona iniziale

Dimostrazione:

- Impostazione per tutte le applicazioni che non sono la tipica misura di livello
 - Dimostrazione apparecchio
 - Riconoscimento e sorveglianza dell'oggetto (necessarie impostazioni addizionali)
- Caratteristiche del sensore:
 - Il sensore accetta immediatamente ogni variazione del valore di misura all'interno del campo di misura
 - Elevata sensibilità ai disturbi, poiché non si ha quasi calcolo del valore medio


Avvertimento:

Se nel serbatoio si verifica una separazione di liquidi con diversa costante dielettrica, per es. nel caso di formazione di condensa, è possibile che, in determinate condizioni, il sensore radar rilevi solo il prodotto col valore più alto di costante dielettrica. Tenete perciò conto del fatto che le interfacce possono compromettere la precisione di


Se volete misurare con sicurezza l'altezza totale di entrambi i liquidi. rivolgetevi ai nostri tecnici o usate un apparecchio di misura d'interfaccia.

del serbatojo

Messa in servizio - Forma La misura può essere influenzata non solo dal prodotto e dall'applicazione, ma anche dalla forma del serbatoio. Per adeguare il sensore alle condizioni di misura, guesta voce menù offre, per determinate applicazioni, differenti possibilità di selezione per il fondo e il cielo del serbaoio.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Altezza del serbatoio, campo di misura Con questa selezione adeguate il campo di lavoro del sensore all'altezza del serbatoio e aumentate notevolmente la sicurezza di misura nelle differenti applicazioni quadro.

Indipendentemente da ciò dovete poi ancora procedere alla taratura di min.

Immettere i parametri desiderati con i relativi tasti, memorizzare con [OK] e passare con [ESC] e [->] alla successiva voce di menu.

Messa in servizio - Taratura

Poiché un sensore radar è uno strumento che misura la distanza, viene misurata la distanza dal sensore alla superficie del prodotto. Per poter visualizzare il livello effettivo del prodotto, la distanza misurata deve essere correlata all'altezza percentuale.

Per l'esecuzione di questa taratura, viene immessa la distanza con il serbatoio pieno e vuoto, v. il seguente esempio:

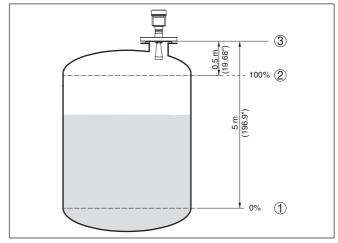
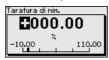


Figura 36: Esempio di parametrizzazione Taratura di min./max.

- 1 Livello min. = max. distanza di misura
- 2 Livello max. = min. distanza di misura
- 3 Piano di riferimento

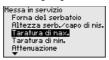
Se questi valori non sono conosciuti, è possibile eseguire la taratura anche con le distanze per es. di 10% e 90%. Il punto di partenza per questi valori di distanza è sempre il piano di riferimento, ovvero la superficie di tenuta della filettatura o della flangia. Ulteriori informazioni sul piano di riferimento sono contenute nel capitolo "Istruzioni di montaggio" e "Dati tecnici". Il livello vero e proprio viene poi calcolato in base a queste immissioni.

Il livello attuale non ha nessuna importanza durante questa taratura, poiché la taratura di min./max. viene sempre eseguita senza variazione di livello. Potete perció eseguire queste impostazioni prima d'installare l'apparecchio.


Messa in servizio - Taratu- Procedere nel modo seguente: ra di min.

1. Selezionare la voce menù "Messa in servizio" con [->] e confermare con [OK]. Ora selezionare con [->] la voce menù "Taratura di min." e confermare con [OK].

2. Editare con [OK] il valore percentuale e con [->] spostare il cursore sulla posizione desiderata.


3. Impostare il valore percentuale desiderato con [+] e memorizzare con [OK]. Il cursore salta ora sul valore della distanza.

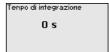
- 4. Impostare per il valore percentuale il relativo valore della distanza in metri per il serbatoio vuoto (per es. distanza del sensore dal fondo del serbatoio).
- 5. Memorizzare le impostazioni con [OK] e con [ESC] e [->] passare alla taratura di max.

Messa in servizio - Taratu- Procedere nel modo seguente: ra di max.

1. Selezionare con [->] la voce menù taratura di max. e confermare con [OK].

2. Preparare il valore percentuale da editare con [OK] e spostare il cursore sulla posizione desiderata con [->].

3. Impostare il valore percentuale desiderato con [+] e memorizzare con [OK]. Il cursore salta ora sul valore della distanza.


- Immettere il valore della distanza in metri per serbatoio pieno corrispondente al valore percentuale. Tenete presente che il livello massimo deve trovarsi a una distanza minima dal bordo dell'antenna.
- 5. Memorizzare le impostazioni con [OK]

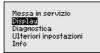
Messa in servizio - Attenuazione

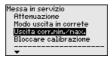
Per attenuare colpi di pressione e oscillazioni di livello, impostate in questa voce di menu un tempo d'integrazione da 0 a 999 s.

L'impostazione di laboratorio é 0 s e/o 1 s, in base al tipo di sensore.

Messa in servizio - modo uscita in corrente

Nella voce di menu "Modo uscita in corrente" si stabiliscono la caratteristica di uscita e il comportamento dell'uscita in corrente in caso di anomalia.



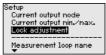



La regolazione di laboratorio è: caratteristica di uscita 4 ... 20 mA e modo disturbo < 3,6 mA.

Messa in servizio - Uscita in corrente min./max.

Nella voce di menu "Uscita in corrente min./max." si stabilisce il comportamento dell'uscita in corrente durante il funzionamento.

La regolazione di laboratorio è: corrente min. 3,8 mA e corrente max 20,5 mA.


Messa in servizio - Bloccare calibrazione

In questa voce di menu è possibile attivare/disattivare permanentemente il PIN. Immettendo un PIN di 4 cifre si proteggono i dati del sensore da accessi non autorizzati e da modifiche involontarie. Il PIN

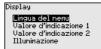
attivato permanentemente può essere disattivato temporaneamente (per ca. 60 minuti) in ogni voce di menu.

Con PIN attivo è possibile accedere solo alle seguenti funzioni:

- selezione delle voci di menu e visualizzazione dati
- lettura dei dati dal sensore nel tastierino di taratura con display

Avvertimento:

Con PIN attivo è interdetta la calibrazione via PACTware/DTM ed anche attraverso altri sistemi.


Nella condizione di fornitura il PIN è "0000".

Display - Lingua

Questa voce di menu consente l'impostazione della lingua desiderata.

Il sensore è fornito con impostata la lingua indicata sull'ordine.

Display - Valore d'indicazione

In questa voce di menu si definisce la visualizzazione del valore di misura sul display.

Per i sensori radar per es., la regolazione di laboratorio è Distanza.

Display - Illuminazione

La retroilluminazione opzionale integrata può essere attivata attraverso il menu di servizio. La funzione dipende dal valore della tensione di alimentazione, vedi -lstruzioni d'uso- del relativo sensore.

Display Lingua Valore d'indicazione Grandezza di scalatura Valore scalare Illuminazione Display
Lingua del menu
Valore d'indicazione 1
Valore d'indicazione 2
Illuminazione

Nello stato di fornitura l'illuminazione è attivata.

Diagnostica - Stato apparecchio

In questa voce di menu è visualizzato lo stato dell'apparecchio.

Messa in servizio Display Diagnostica Ulteriori impostazioni Info

Diagnostica Stato apparecchio Ind.valori di picco Temperatura elettronica Sicurezza di misura Simulazione

Stato apparecchio OK

Diagnostica - Indicatore di scarto (valore min/ max) (distanza)

Di volta in volta vengono memorizzati nel sensore il valore di misura di distanza minimo e massimo. I valori sono visualizzati alla voce "Indicatore di scarto (valore min/max)".

Messa in servizio Display Diagnostica Ulteriori impostazioni Info

Diagnostica Stato apparecchio Ind.valori di picco Temperatura elettronica Sicurezza di misura Simulazione

Ind.valori di picco Min. $0.108 \, \mathrm{m}$ Max. 12.911 m

Diagnostica - Temperatura dell'elettronica

Il valore minimo e il valore massimo della temperatura dell'elettronica vengono memorizzati nel sensore. Questi valori e il valore attuale della temperatura sono visualizzati nella voce di menu "Indicatore di scarto (valore min/max)".

Messa in servizio Display Diagnostica Ulteriori impostazioni Info

Diagnostica Stato apparecchio Ind.valori di picco Temperatura elettronica Sicurezza di misura Simulazione

Diagnostica Ind.valori di picco Picco sicur. misura Val. picco altri Curva d'eco Simulazione

Temperatura elettronica Attuale 28,30 % 20.40 % Min. Max. 32,20 ℃

misura

Diagnostica - Sicurezza di Nei sensori di misura senza contatto il funzionamento può essere influenzato dalle condizioni di processo. In guesta voce menù la sicurezza di misura dell'eco di livello é indicata in dB. La sicurezza di misura equivale all'intensità del segnale meno il rumore: quanto più alto é il valore risultante, tanto più sicura é la misurazione. I valori sono > 10 dB con una misura funzionante correttamente.

> Messa in servizio Display Diagnostica Ulteriori impostazioni Info

Diagnostica Ind.valori di picco Temperatura elettronica Sicurezza di misura Simulazione Visualizzazione curva

Sicurezza di misura 15 dB

Diagnostica - Simulazione

In questa voce di menu si simulano i valori di misura attraverso l'uscita in corrente. Ciò consente di controllare il percorso del segnale, per es. attraverso indicatori collegati a valle o la scheda d'ingresso del sistema di controllo.

Messa in servizio Display Diagnostica Illteriori impostazioni Info

Diagnostica Temperatura elettronica Sicurezza di misura Simulazione Uisualizzazione curua

Avviare simulazione?

Avvio della simulazione:

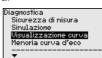
- 1. Premere [OK]
- Con [->] selezionare il valore di simulazione desiderato e confermare con [OK]
- Con [OK] avviate la simulazione. Il valore attuale di misura è dapprima visualizzato in %
- 4. Con [OK] avviate il modo editazione
- 5. Con [+] e [->] impostare il valore numerico desiderato.
- 6. Premere [OK]

Avviso:

Durante la simulazione il valore simulato sarà fornito come valore in corrente 4 ... 20 mA e come segnale digitale HART.

Interruzione della simulazione:

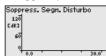
→ Premere [ESC]


Informazione:

La simulazione s'interrompe automaticamente 10 minuti dopo l'ultimo azionamento di un tasto.

Diagnostica - Visualizzazione curve

La "curva d'eco" rappresenta l'intensità di segnale dell'eco nel campo di misura in dB. L'intensità del segnale consente una valutazione della qualità della misura.

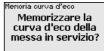


La "soppressione dei segnali di disturbo" rappresenta gli echi di disturbo memorizzati (vedi menu *Ulteriori impostazioni*") del serbatoio vuoto nel campo di misura con intensità del segnale in "dB"

Un confronto tra curva d'eco e soppressione dei segnali di disturbo consente di valutare con maggiore precisione la sicurezza di misura.

La curva selezionata viene attualizzata costantemente. Tramite il tasto *IOK1* si apre un sottomenu con funzioni di zoom:

- "X-Zoom": funzione d'ingrandimento della distanza
- "Y-Zoom": funzione d'ingrandimento di 1, 2, 5 e 10 volte del segnale in "dB"
- "Unzoom": ritorno all'effettiva grandezza del campo nominale di misura


Diagnostica - Memoria curva d'eco

La funzione" Memoria curva d'eco" consente di memorizzare la curva d'eco al momento della messa in servizio. Generalmente questo è consigliabile, mentre per l'utilizzo della funzionalità Asset-Management è addirittura richiesto obbligatoriamente. La memorizzazione dovrebbe avvenire al più basso livello possibile.

Con il software operativo PACTware ed il PC si può mostrare ed utilizzare la curva d'eco ad alta risoluzione per riconoscere le modifiche del segnale nel corso del funzionamento. Inoltre la curva d'eco della messa in servizio può anche essere mostrata nella finestra curva d'eco e confrontata con la curva d'eco attuale.

Ulteriori Impostazioni -Unità dell'apparecchio

In questa voce di menu si scelgono la grandezza di misura del sistema e l'unità della temperatura.

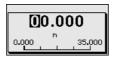
Ulteriori impostazioni -Soppressione dei segnali di disturbo

Queste condizioni provocano riflessioni di disturbo e possono compromettere la precisione di misura:

- tronchetto lungo
- strutture interne del serbatoio, come tiranti di montaggio
- agitator
- Adesioni o cordoni di saldatura alle pareti del serbatoio

Avviso:

Una funzione di soppressione dei segnali di disturbo rileva, registra e memorizza questi segnali, che non saranno presi in considerazione durante la misura di livello.


Questa funzione deve essere eseguita possibilmente con livello ridotto, per riuscire a rilevare tutte le riflessioni di diturbo eventualmente esistenti.

Procedere nel modo seguente:

 Selezionare con [->] la voce di menu "Soppressione dei segnali di disturbo" e confermare con [OK].

- Confermare tre volte con [OK] e immettere l'effettiva distanza dal sensore alla superficie del prodotto.
- 3. Tutti i segnali di disturbo presenti in questo campo saranno rilevati dal sensore e memorizzati dopo la conferma con [OK].

Avviso:

Controllate la distanza dalla superficie del prodotto, poiché una errata impostazione (valore troppo elevato) del livello attuale viene memorizzata come segnale di disturbo. In questo caso il sensore non sarà più in grado di misurare il livello in questo campo.

Se nel sensore è già stata predisposta una soppressione dei segnali di disturbo, selezionando "Soppressione dei segnali di disturbo" compare la seguente finestra di menu:

Cancellare: consente di cancellare completamente una soppressione dei segnali di disturbo già predisposta. Ciò è opportuno nel caso in cui tale soppressione dei segnali di disturbo non sia più adeguata alle caratteristiche del serbatoio in relazione alla tecnica di misura.

Ampliare: consente di ampliare una soppressione dei segnali di disturbo già predisposta. Ciò è opportuno per es. quando una soppressione dei segnali di disturbo è stata eseguita con un livello troppo alto, per cui non è stato possibile rilevare tutti gli echi di disturbo. Selezionando "Ampliare" viene visualizzata la distanza della soppressione dei segnali di disturbo esistente dalla superficie del prodotto. Questo valore può essere modificato e la soppressione dei segnali di disturbo può essere estesa a questo settore.

Ulteriori impostazioni -Linearizzazione

È necessaria la linearizzazione di tutti i serbatoi il cui volume non aumenta linearmente con l'altezza di livello (per esempio i serbatoi cilindrici orizzontali o i serbatoi sferici) per i quali si desidera l'indicazione del volume. Esistono a questo scopo apposite curve di linearizzazione che indicano il rapporto fra altezza percentuale e volume del serbatoio.

Attivando la curva adatta appare correttamente il volume del serbatoio in percentuale. Se il volume è mostrato non in percentuale, bensì per es. in litri o chilogrammi, è possibile impostare un valore scalare alla voce menù "Display".

Messa in servizio Display Diagnostica Ulteriori impostazioni Info Ulteriori impostazioni Unità dell'apparecchio Soppress. Segn. Disturbo Curva di linearizz. PIN Data/Ora

✓ <u>Lineare</u> Serb.cilindr.lin. Serb. Sferico Palner-Bowlus-Flune Venturi,strana. trapeziod.

Immettete i parametri desiderati con i relativi tasti e passate alla successiva voce menù col tasto [ESC] e [->].

Avvertimento:

In caso di uso dell'apparecchio con relativa omologazione come componente di una sicurezza di sovrappieno secondo WHG, va rispettato quanto segue:

Se si seleziona una curva di linearizzazione, il segnale di misura non è più necessariamente lineare rispetto al livello. L'utente deve tenerne conto in particolare per l'impostazione del punto di intervento sul rilevatore di livello.

Ulteriori impostazioni - PIN

Immettendo un PIN di 4 cifre si proteggono i dati del sensore da accessi non autorizzati e da modifiche involontarie. In questa voce di menu il PIN viene visualizzato ovv. modificato. È comunque disponibile solamente se nel menu "Messa in servizio" è stata autorizzata la calibrazione.

Messa in servizio Display Diagnostica Ulteriori inpostazioni Info Ulteriori impostazioni Soppress, Segn. Disturbo Curva di linearizz, PIN Data/Ora Reset Ulteriori impostazioni PIN Data/Ora Reset Copiare impos. appar. Tipo di sonda

PIN Attuale
O
Modificare adesso?

Nella condizione di fornitura il PIN è "0000".

Ulteriori impostazioni -Data/Ora

Questa voce di menu consente di regolare l'orologio interno del sensore.

Messa in servizio Display Diagnostica <u>Ulteriori impostazioni</u> Info Ulteriori impostazioni Curva di linearizz. PIN Datazora Reset Funzione HART

Ulteriori impostazioni -Reset

Tramite il reset determinate impostazioni dei parametri effettuate dall'utente vengono riportate ai valori precedenti.

Reset Selezionare reset

Sono disponibili le seguenti funzioni di reset:

Condizione della consegna: ripristino delle impostazioni dei parametri al momento della spedizione da laboratorio, comprese le impostazioni specifiche dell'ordine. Saranno cancellate le seguenti impostazioni: soppressione dei segnali di disturbo, curva di linearizzazione liberamente programmata e memorizzazione dei valori di misura.

Impostazioni base: ripristino delle impostazioni dei parametri, inclusi i parametri speciali sui valori di default del relativo apparecchio. Le seguenti funzioni saranno cancellate: soppressione dei segnali di disturbo creata, curva di linearizzazione programmata dall'operatore e memoria dei valori di misura.

Messa in servizio: ripristino delle impostazioni dei parametri nella voce di menu Messa in servizio ai valori di default del relativo apparecchio. Un'eventuale soppressione dei segnali di disturbo, una curva di linearizzazione liberamente programmata, la memoria dei valori di misura e la memoria degli eventi si conservano. La linearizzazione viene impostata su lineare.

Soppressione dei segnali di disturbo: Cancellazione di una soppressione dei segnali di disturbo precedentemente creata. Resta attiva la soppressione dei segnali di disturbo creata in laboratorio.

Indicatore di scarto (valore min/max) valore di misura: ripristino delle distanze di min. e di max. misurate sugli attuali valori di misura.

La seguente tabella mostra i valori di default dell'apparecchio. Per determinati apparecchi, alcune voci di menu non sono disponibili o sono disposte in modo diverso:

Manner Walana di manur. Walana di dafanik		
Menu	Voce di menu	Valore di default
Messa in servizio	Denominazione punto di misura	Sensore
	Prodotto	Liquido/Soluzione acquosa
		Materiale in pezzatura/Pietrisco, ghiaia
	Applicazione	Serbatoio di stoccaggio
		Silo
	Forma del serbatoio	Fondo del serbatoio bombato
		Cielo del serbatoio bombato
	Altezza del serbatoio/ Campo di misura	Campo di misura consigliato, vedi "Dati tecnici" nell'appendice.
	Taratura di min.	Campo di misura consigliato, vedi "Dati tecnici" nell'appendice.
	Taratura di max.	0,000 m(d)
	Attenuazione	0,0 s
	Modo uscita in corrente	4 20 mA, < 3,6 mA
	Uscita in corrente min./ max.	Min. corrente 3,8 mA, max. corrente 20,5 mA
	Bloccare calibrazione	Sbloccato
Display	Lingua	Come da commessa
	Valore d'indicazione	Distanza
	Unità d'indicazione	m
	Grandezza di cambiamen-	Volume
	to di scala	I
	Cambiamento di scala	0,00 lin %, 0 l
		100,00 lin %, 100 l
	Illuminazione	Accesa

Menu	Voce di menu	Valore di default
Ulteriori impostazioni	Unità di distanza	m
	Unità di temperatura	°C
	Lunghezza della sonda di misura	Lunghezza del tubo di livello da officina
	Curva di linearizzazione	Lineare
	Modalità HART	Standard
		Indirizzo 0

Ulteriori impostazioni -Modo operativo HART

Il sensore offre i modi operativi HART e multidrop. In questa voce menù stabilite il modo operativo HART e immettete l'indirizzo per multidrop.

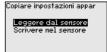
Il modo operativo standard con indirizzo fisso 0 significa indicazione del valore di misura come segnale 4 ... 20 mA.

Nel modo operativo multidrop é possibile gestire fino a 63 sensori ad un cavo bifilare. Ad ogni sensore dovrà essere assegnato un indirizzo fra 1 e 63.10

La regolazione standard di laboratorio é con indirizzo 0.

Ulteriori impostazioni - Copiare impostazioni apparecchio

Tramite questa funzione si copiano impostazioni dell'apparecchio. Sono disponibili le seguenti funzioni:


- Memorizzare i dati del sensore nel tastierino di taratura con display
- Memorizzare i dati del tastierino di taratura con display nel sensore

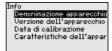
Saranno memorizzati i seguenti dati e/o le impostazioni della calibrazione del tastierino di taratura con display:

- Tutti i dati dei menu "Messa in servizio" e "Display"
- Nel menu "Ulteriori impostazioni" i punti "Unità di distanza, unità di temperatura e linearizzazione"
- I valori della curva di linearizzazione liberamente programmabile

I dati copiati sono salvati in una memoria permanente EEPROM del tastierino di taratura con display e non andranno persi neppure durante una caduta di tensione. Voi potete prelevarli e scriverli in uno o più sensori o custodirli per una eventuale sostituzione del sensore.

Il segnale 4 ... 20 mA-del sensore sarà disinserito. il sensore assorbe una corrente fissa di 4 mA. Il segnale di misura sarà trasmesso unicamente come segnale digitale HART.

Il sistema e la quantità di dati copiati dipendono dal tipo di sensore.


Avviso:

I dati saranno memorizzati nel sensore solo dopo un controllo che assicuri la loro idoneità al sensore. In caso contrario apparirà un messaggio d'errore o sarà bloccata la funzione. Durante la scrittura dei dati nel sensore sarà visualizzato il tipo d'apparecchio da cui provengono e il numero di TAG di questo sensore.

Info - Denominazione apparecchio

In questo menu è possibile prendere visione del nome e del numero di serie dell'apparecchio:

Info - Versione dell'apparecchio

Questa voce di menu visualizza la versione harware e software del sensore.

Info - Data di calibrazione

In questa voce di menu sono indicate la data della calibrazione di laboratorio del sensore e la data dell'ultima modifica di parametri del sensore attraverso il tastierino di taratura con display e/o via PC.

Caratteristiche apparecchio

In guesta voce di menu sono indicate le caratteristiche del sensore quali: omologazione, attacco di processo, quarnizione, campo di misura, elettronica, custodia ed altre.

6.5

Su carta

Protezione dei dati di parametrizzazione È consigliabile annotare i dati impostati, per es. su questo manuale e poi archiviarli. Saranno così disponibili per ogni futura esigenza.

Nel tastierino di taratura con display

Se l'apparecchio è dotato di un tastierino di taratura con display, i dati di parametrizzazione possono essere memorizzati sul tastierino. La procedura è descritta alla voce di menu "Copiare impostazioni apparecchio".

7 Messa in servizio con PACTware

7.1 Collegamento del PC

Tramite l'adattatore d'interfaccia, direttamente al sensore

Figura 37: Collegamento diretto del PC al sensore via adattatore d'interfaccia

- 1 Cavo USB di collegamento al PC
- 2 Adattatore d'interfaccia VEGACONNECT
- 3 Sensore

Via adattatore d'interfaccia e HART

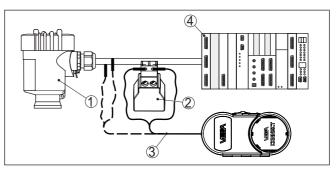


Figura 38: Collegamento del PC via HART alla linea del segnale

- 1 Sensore
- 2 Resistenza HART 250 Ω (opzionale in base all'elaborazione)
- 3 Cavo di collegamento con spinotti di 2 mm e morsetti
- 4 Sistema d'elaborazione/PLC/Alimentazione in tensione
- 5 Adattatore d'interfaccia, per es. VEGACONNECT 4

i

Avviso:

Nel caso di alimentatori con resistenza HART integrata (resistenza interna ca. $250~\Omega$) non occorre una ulteriore resistenza esterna. Ciò vale per es. per gli apparecchi VEGA VEGATRENN 149A, VEGAMET 381 e VEGAMET 391. Anche le più comuni barriere di separazione Ex sono corredate nella maggior parte dei casi di una sufficiente resistenza di limitazione di corrente. In questi casi l'adattatore d'interfaccia può essere collegato in parallelo alla linea 4 ... 20 mA (nella precedente figura appare tratteggiata)

Presupposti

7.2 Parametrizzazione

Per la parametrizzazione dell'apparecchio tramite un PC Windows sono necessari il software di configurazione PACTware e un driver dell'apparecchio idoneo (DTM), conforme allo standard FDT. L'attuale versione PACTware e tutti i DTM disponibili sono raccolti in una DTM Collection. È inoltre possibile integrare i DTM in altre applicazioni quadro conformemente allo standard FDT.

•

Avviso:

Per garantire il supporto di tutte le funzioni dell'apparecchio è necessario usare l'ultima DTM Collection, anche perchè le vecchie versioni Firmware non contengono tutte le funzioni descritte. È possibile scaricare l'ultima versione dell'apparecchio dalla nostra homepage. Su internet è disponibile anche una procedura di aggiornamento.

Ulteriori operazioni di messa in servizio sono descritte nelle -lstruzioni d'uso- "DTM Collection/PACTware", allegate ad ogni DTM Collection e scaricabili via internet. Una descrizione dettagliata è disponibile nella quida in linea di PACTware e nei DTM.

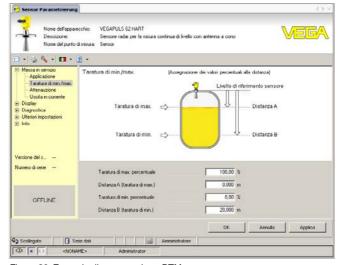


Figura 39: Esempio di una maschera DTM

Versione standard/Versione completa

Tutti i DTM degli apparecchi sono disponibili in versione standard e in versione integrale a pagamento. La versione standard contiene tutte le funzioni necessarie alla completa messa in servizio. Un assistente per la semplice configurazione del progetto facilita notevolmente la calibrazione. Parti integranti della versione standard sono anche la memorizzazione/stampa del progetto e una funzione Import/Export.

La versione integrale contiene anche una funzione di stampa ampliata per l'intera documentazione del progetto e la possibilità di memorizzare curve dei valori di misura e curve d'eco. Mette anche a disposizione un programma di calcolo del serbatoio e un multiviewer

per la visualizzazione e l'analisi delle curve dei valori di misura e delle curve d'eco memorizzate.

La versione standard può essere scaricata dal sito www.vega.com/downloads, "Software". La versione integrale è disponibile su CD presso la rappresentanza responsabile.

7.3 Protezione dei dati di parametrizzazione

È consigliabile annotare e memorizzare i dati di parametrizzazione via PACTware. Saranno così disponibili per ogni eventuale futura esigenza.

8 Messa in servizio con altri sistemi

8.1 Programmi di servizio DD

Sono disponibili descrizioni degli apparecchi sotto forma di Enhanced Device Description (EDD) per programmi di servizio DD, come per es AMS™ e PDM.

I file possono essere scaricati da <u>www.vega.com/downloads</u>, "Software".

8.2 Field Communicator 375, 475

Sono disponibili descrizioni degli apparecchi sotto forma di EDD per la parametrizzazione col Field Communicator 375 ovv. 475.

Per l'integrazione degli EDD nel Field Communicator 375 ovv. 475 è necessario il software "Easy Upgrade Utility" del costruttore. Questo software viene aggiornato via Internet e i nuovi EDD vengono assunti automaticamente nel catalogo apparecchi del software dopo l'autorizzazione da parte del costruttore e possono essere poi trasmessi a un Field Communicator.

9 Diagnostica, Asset Management e assistenza

9.1 Manutenzione

Manutenzione

L'apparecchio, usato in modo appropriato durante il normale funzionamento, non richiede una particolare manutenzione.

Pulizia

La pulizia contribuisce a far sì che la targhetta d'identificazione e i contrassegni sull'apparecchio siano ben visibili.

In proposito prestare attenzione alle seguenti prescrizioni:

- utilizzare esclusivamente detergenti che non intacchino la custodia, la targhetta d'identificazione e le guarnizioni
- impiegare solamente metodi di pulizia adeguati al grado di protezione dell'apparecchio

9.2 Memoria di valori di misura e di eventi

L'apparecchio dispone di più memorie utilizzate a fini di diagnosi. I dati si conservano anche in caso di interruzioni di tensione.

Memorizzazione valori di misura

Nel sensore possono essere memorizzati fino a 100.000 valori di misura in una memoria ad anello. Ciascuna registrazione è corredata di data/ora e del relativo valore di misura. Tra i valori memorizzabili rientrano per es.:

- Distanza
- Livello
- Valore percentuale
- Lin. percentuale
- scalare
- Valore in corrente
- Sicurezza di misura
- temperatura dell'elettronica

Nello stato di consegna dell'apparecchio la memoria dei valori di misura è attiva e salva ogni 3 minuti la distanza, la sicurezza di misura e la temperatura dell'elettronica.

I valori che si desidera memorizzare e le condizioni di registrazione vengono impostati tramite un PC con PACTware/DTM ovv. il sistema pilota con EDD. Gli stessi canali vengono utilizzati per la lettura o il resettaggio dei dati.

Memorizzazione eventi

Nel sensore vengono memorizzati automaticamente fino a 500 eventi (non cancellabili) con timbro temporale. Ciascuna registrazione contiene data/ora, tipo di evento, descrizione dell'evento e valore. Esempi di evento:

- modifica di un parametro
- momenti di inserzione e disinserzione
- Messaggi di stato (secondo NE 107)
- Messaggi di errore (secondo NE 107)

I dati sono letti mediante un PC con PACTware/DTM e/o attraverso il sistema di controllo con EDD.

Memorizzazione della curva d'eco

Le curve d'eco vengono memorizzate con la data e l'ora ed i relativi dati d'eco. La memoria è suddivisa in due parti:

Curva d'eco della messa in servizio: vale come curva d'eco di riferimento per le condizioni di misura in occasione della messa in servizio. In tal modo è facile individuare modifiche delle condizioni di misura nel corso dell'esercizio o adesioni sul sensore. La curva d'eco della messa in servizio viene salvata tramite:

- PC con PACTware/DTM
- sistema pilota con EDD
- Tastierino di taratura con display

Ulteriori curve d'eco: in quest'area di memoria è possibile memorizzare nel sensore fino a 10 curve d'eco in una memoria ad anello. Le ulteriori cure d'eco vengono salvate tramite:

- PC con PACTware/DTM
- sistema pilota con EDD

9.3 Funzione di Asset Management

L'apparecchio dispone di un'autosorveglianza e diagnostica secondo NE 107 e VDI/VDE 2650. Relativamente alle segnalazioni di stato indicate nella tabella seguente sono visibili messaggi di errore dettagliati alla voce di menu "*Diagnostica*" tramite tastierino di taratura con display, PACTware/DTM ed EDD.

Segnalazioni di stato

I messaggi di stato sono suddivisi nelle seguenti categorie:

- Guasto
- Controllo di funzionamento
- Fuori specifica
- Manutenzione necessaria

e sono chiariti da pittogrammi:

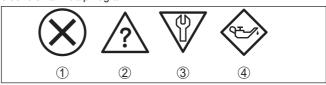


Figura 40: Pittogrammi delle segnalazioni di stato

- 1 Guasto (Failure) rosso
- 2 Fuori specifica (Out of specification) giallo
- 3 Controllo di funzionamento (Function check) arancione
- 4 Manutenzione necessaria (Maintenance) blu

Guasto (Failure): a causa del riconoscimento di un difetto di funzionamento nell'apparecchio, questo segnala un guasto.

Questa segnalazione di stato è sempre attiva e non può essere disattivata dall'utente.

Controllo di funzionamento (Function check): si sta lavorando sull'apparecchio, il valore di misura è temporaneamente non valido (per es. durante la simulazione).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Fuori specifica (Out of specification): il valore di misura non è sicuro, poiché è stata superata la specifica dell'apparecchio (per es. temperatura dell'unità elettronica).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Manutenzione necessaria (Maintenance): la funzione dell'apparecchio è limitata da influssi esterni. La misura viene influenzata, il valore di misura è ancora valido. Pianificare la manutenzione perché è probabile un guasto imminente (per es. a causa di adesioni).

Nelle impostazioni di default questa segnalazione di stato è inattiva. L'utente può attivarla tramite PACTware/DTM o EDD.

Failure

Codice	Cause	Eliminazione	DevSpec
Testo del mes- saggio			State in CMD 48
F013	● Il sensore non rileva l'eco	Controllare e correggere l'instal-	Bit 0 di byte 0 5
Nessun valore di misura disponibile	durante il funzionamento Sistema di antenna sporco o difettoso	■ Pulire o sostituire gli attacchi di processo e/o l'antenna	
F017	Taratura fuori specifica	Modificare la taratura conforme-	Bit 1 di byte 0 5
Escursione taratura troppo piccola		mente ai valori limiti (differena tra min. e max. ≥ 10 mm)	
F025	● I punti di riferimento non	Verificare la tabella di lineariz-	Bit 2 di byte 0 5
Errore nella tabella di linearizzazione	seguono una andamento costante, per es. coppie di valori illogiche	zazione • Cancellare/Ricreare tabella	
F036 Software non fun- zionante	Aggiornamento software fallito o interrotto	Ripetere aggiornamento software Controllare esecuzione dell'elettronica Sostituire l'elettronica Spedire l'apparecchio in riparazione	Bit 3 di byte 0 5
F040	Difetto di hardware	Sostituire l'elettronica	Bit 4 di byte 0 5
Errore nell'elettro- nica		Spedire l'apparecchio in ripa- razione	
F080	Errore generale di software	Disconnettere brevemente la	Bit 5 di byte 0 5
Errore generale di software		tensione di esercizio	
F105	L'apparecchio è ancora in fase	Attendere la fine della fase di	Bit 6 di byte 0 5
Determinazione va- lori di misura	di avvio, non è stato possibile determinare il valore di misura	avvio Durata a seconda dell'esecuzione e della parametrizzazione: fino a ca. 3 minuti	

Codice	Cause	Eliminazione	DevSpec
Testo del mes- saggio			State in CMD 48
F113 Errore di comuni- cazione	Disturbi EMI Errore di trasmissione nella comunicazione interna con l'alimentatore quadrifilare	● Eliminare influenze EMI	Bit 12 di byte 0 5
F125 Temperatura dell'elettronica ina- cettabile	Temperatura dell'elettronica fuori specifica	Controllare temperatura ambiente Isolare l'elettronica Usare un apparecchio con un maggiore campo di temperatura	Bit 7 di byte 0 5
F260 Errore di calibra- zione	Errore nella calibrazione ese- guita in laboratorio Errore nella EEPROM	Sostituire l'elettronica Spedire l'apparecchio in riparazione	Bit 8 di byte 0 5
F261 Errore nell'im- postazione dell'apparecchio	Errore durante la messa in servizio Soppressione dei segnali di disturbo errata Errore nel corso dell'esecuzione di un reset	Ripetere messa in servizio Eseguire il reset	Bit 9 di byte 0 5
F264 Errore d'installa- zione/di messa in servizio	La taratura non compresa all'interno dell'altezza del serbatoio/ del campo di misura Massimo campo di misura dell'apparecchio insufficiente	Controllare e correggere l'instal- lazione e/o la parametrizzazione Installare un apparecchio con un maggiore campo di misura	Bit 10 di byte 0 5
F265 Funzione di misura disturbata	Il sensore non effettua più alcuna misura Tensione d'alimentazione troppo bassa	Controllare la tensione d'esercizio Eseguire il reset Disconnettere brevemente la tensione di esercizio	Bit 11 di byte 0 5

Function check

Codice Testo del mes- saggio	Cause	Eliminazione	DevSpec State in CMD 48
C700 Simulazione attiva	● È attiva una simulazione	Terminare simulazione Attendere la fine automatica dopo 60 minuti	"Simulation Active" in "Standardized Status 0"

Out of specification

Codice Testo del mes- saggio	Cause	Eliminazione	DevSpec State in CMD 48
S600 Temperatura dell'elettronica ina- cettabile	Temperatura dell'elettronica fuori specifica	Controllare temperatura ambiente Isolare l'elettronica Usare un apparecchio con un maggiore campo di temperatura	Bit 5 di byte 14 24

Codice Testo del mes- saggio	Cause	Eliminazione	DevSpec State in CMD 48
S601 Sovrappieno	Pericolo di sovrappieno del serbatoio	Assicurarsi che non avviene alcun ulteriore carico Controllare il livello nel serbatoio	Bit 6 di byte 14 24

Tab. 9: Codici di errore e messaggi testuali, informazioni sulla causa e sui possibili rimedi

Maintenance

Codice Testo del mes- saggio	Cause	Eliminazione	DevSpec State in CMD 48
M500 Errore durante reset della condizione di fornitura	Durante il reset allo stato di fornitura non è stato possibile ripristinare i dati	Ripetere reset Caricare il file XML con i dati del sensore nel sensore	Bit 0 di byte 14 24
M501 Errore nella tabel- la di linearizzazione non attiva	Errore hardware EEPROM	Sostituire l'elettronica Spedire l'apparecchio in riparazione	Bit 1 di byte 14 24
M502 Errore nella memoria diagnostica	Errore hardware EEPROM	Sostituire l'elettronica Spedire l'apparecchio in riparazione	Bit 2 di byte 14 24
M503 Sicurezza di misura esigua	● Il rapporto eco/rumore è troppo esiguo per una misurazione sicura	Controllare condizioni d'installazione e di processo Pulire l'antenna Modificare orientamento di polarizzazione Installare un apparecchio con sensibilità più elevata	Bit 3 di byte 14 24
M504 Errore in una inter- faccia apparecchio	Difetto di hardware	Controllare collegamenti Sostituire l'elettronica Spedire l'apparecchio in riparazione	Bit 4 di byte 14 24
M505 Non c'e alcun eco	● L'eco di livello non può più essere rilevato	Pulire l'antenna Utilizzare antenna/sensore più idonei Eliminare eventuali echi di disturbo presenti Ottimizzare posizione sensore ed orientamento	Bit 7 di byte 14 24

Tab. 10: Codici di errore e messaggi testuali, informazioni sulla causa e sui possibili rimedi

9.4 Eliminazione di disturbi

Comportamento in caso di disturbi

È responsabilità del gestore dell'impianto prendere le necessarie misure per eliminare i disturbi che eventualmente si presentassero.

Procedimento per l'eliminazione di disturbi

I primi provvedimenti sono:

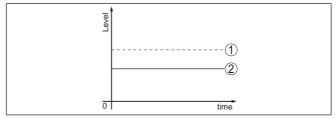
Valutazione di messaggi d'errore tramite lo strumento di calibrazione

- · Controllo del segnale in uscita
- Trattamento di errori di misura

Un PC con il software PACTware e il relativo DTM offre ulteriori ampie possibilità diagnostiche. In molti casi in questo modo è possibile individuare le cause delle anomalie e provvedere alla loro eliminazione.

Controllare il segnale 4 ... 20 mA

Collegare secondo lo schema elettrico un multimetro portatile nell'idoneo campo di misura. La seguente tabella descrive gli eventuali errori del segnale in corrente e i possibili rimedi.


Errore	Cause	Eliminazione
Segnale 4 20 mA instabile	La grandezza di misura oscilla	Impostare l'attenuazione
Segnale 4 20 mA assente	Collegamento elettrico difettoso	Verificare ed event. correggere l'allac- ciamento
	Manca alimentazione in tensione	Controllare che i collegamenti non siano interrotti, eventualmente ripri- stinarli
	Tensione di alimentazione troppo bassa, impedenza del carico troppo alta	Controllare ed adeguare
Segnale in corrente superiore a 22 mA, inferiore a 3,6 mA	Elettronica del sensore guasta	Sostituire l'apparecchio o inviarlo in riparazione

Trattamento di errori di misura su liquidi

Le tabelle seguenti contengono esempi tipici di errori di misura su liquidi legati all'applicazione stessa. Si dintinugue tra errori di misura in caso di

- livello costante
- riempimento
- svuotamento

Le immagini nella colonna "Immagine errore" mostrano il livello effettivo con una linea tratteggiata e quello visualizzato dal sensore con una linea continua.

- 1 Livello effettivo
- 2 Livello indicato dal sensore

Avvertenze:

 Ovunque il sensore visualizzi un valore costante, la causa potrebbe risiedere anche nell'impostazione di anomalia dell'uscita in corrente su "Mantieni valore"

• In caso di visualizzazione di un livello troppo basso, la causa potrebbe essere anche un'eccessiva resistenza di linea

Errori di misura con livello costante

Descrizione dell'er- rore	Cause	Eliminazione
1. Il valore di misura	● Taratura di min./max. non corretta	Adeguare la taratura di min./max.
visualizza un livello troppo basso o trop-	Curva di linearizzazione errata	Adeguare la curva di linearizzazione
po alto	Montaggio in tubo di bypass o di livello, da ciò risulta un errore (errore di misura pic- colo vicino a 100%/grande vicino a 0%)	Verificare i parametri dell'applicazione relativi alla forma del serbatoio, event. adeguarli (bypass, tubo di livello, diametro)
2. Il valore di misura va verso 0%	Eco multiplo (cielo del serbatoio, superficie del prodotto) con ampiezza superiore all'eco di livello	Verificare i parametri dell'applicazione, in particolare cielo del serbatoio, tipo di prodotto, fondo toroidale, elevato valore di costante dielettrica, eventualmente adeguarli
3. Il valore di misura va verso 100%	L'ampiezza dell'eco di livello cala per ragioni di processo Non è stata eseguita la soppressione dei segnali di disturbo	Eseguire una soppressione dei segnali di disturbo
ō tma	Variazione dell'ampiezza o della posizione di un eco di disturbo (per es. condensa, depositi di prodotto); la soppressione dei segnali di disturbo non è più adeguata	Determinare la causa dei segnali di disturbo ed eseguire la soppressione dei segnali di disturbo per es. con condensa

Errori di misura al riempimento

Descrizione dell'er- rore	Cause	Eliminazione
4. Il valore di misura rimane invariato al riempimento	Echi di disturbo troppo grandi nella zona iniziale ovv. eco del livello troppo piccolo Forte formazione di schiuma o vortice Taratura di max. non corretta	Eliminare i segnali di disturbo al massimo livello Controllare la configurazione di misura: l'antenna deve sporgere dal tronchetto, installazioni Togliere eventuale sporco depositato sull'antenna In caso di disturbi legati a installazioni interne al massimo livello: modificare l'orientamento di polarizzazione Riconfigurare la soppressione dei segnali di disturbo Adeguare la taratura di max.

Descrizione dell'er- rore	Cause	Eliminazione
5. Al riempimento il valore di misura rimane nella sezione del fondo	• Eco del fondo del serbatoio più grande dell'eco di livello, per es. per prodotti con $\epsilon_{\rm r} < 2.5$ a base di olio, solvente	Controllare ed eventualmente correggere i parametri prodotto, altezza del serbatoio e forma del fondo
6. Al riempimento il valore di misura rimane temporameamente fermo e poi passa al livello corretto	Turbolenze sulla superficie del prodotto, riempimento rapido	Controllare i parametri, eventualmente correggerli, per es. in serbatoio di dosag- gio, reattore
7. Al riempimento il valore di misura va verso 0%	L'ampiezza di un eco multiplo (cielo del serbatoio - superficie del prodotto) è maggiore a quella dell'eco di livello	Verificare i parametri dell'applicazione, in particolare cielo del serbatoio, tipo di prodotto, fondo toroidale, elevato valore di costante dielettrica, eventualmente adeguarli
	In un punto di eco di disturbo non è pos- sibile distinguere l'eco di livello dall'eco di disturbo (passa a eco multiplo)	In caso di disturbi legati a installazioni interne al massimo livello: modificare l'orientamento di polarizzazione Scegliere una posizione di installazione più idonea
8. Al riempimento il valore di misura va verso 100%	A causa di forti turbolenze e di formazione di schiuma al riempimento l'ampiezza dell'eco di livello cala. Il valore di misura passa a eco di disturbo	Eseguire una soppressione dei segnali di disturbo
9. Al riempimento il valore di misura passa sporadicamente a 100%	Condensa variabile o depositi di sporco sull'antenna	Eseguire la soppressione dei segnali di disturbo o aumentare la soppressione dei segnali di disturbo con condensa/sporco al massimo livello tramite editazione
10. Il valore di misura passa a ≥ 100% ovv. 0 m di distanza	■ L'eco di livello non viene più rilevato nella zona iniziale a causa della formazione di schiuma o di segnali di disturbo nella zona iniziale. Il sensore passa a "Sicurezza di sovrappieno". Vengono indicati il max. livello (distanza 0 m) e il messaggio di stato "Sicurezza di sovrappieno".	Controllare il punto di misura: l'antenna deve sporgere dal tronchetto Togliere eventuale sporco depositato sull'antenna Utilizzare un sensore con un'antenna più adatta

Errori di misura allo svuotamento

Descrizione dell'er- rore	Cause	Eliminazione
11. Allo svuotamento il valore di misura rimane al massimo livello	L'eco di disturbo è più grande dell'eco di livello Eco di livello troppo piccolo	Eliminare il segnale di disturbo nella zona iniziale. Verificare che l'antenna sporga dal tronchetto Togliere eventuale sporco depositato sull'antenna In caso di disturbi legati a installazioni interne al massimo livello: modificare l'orientamento di polarizzazione Una volta eliminati gli echi di disturbo va cancellata la soppressione dei segnali di disturbo. Eseguire una nuova soppressione dei segnali di disturbo
12. Allo svuotamento il valore di misura va verso lo 0%	• Eco del fondo del serbatoio più grande dell'eco di livello, per es. per prodotti con $\epsilon_{_{\rm r}}$ < 2,5 a base di olio, solvente	Controllare ed eventualmente correggere i parametri tipo di prodotto, altezza del serbatoio e forma del fondo
13. Allo svuotamento il valore di misura va sporadicamente verso il 100%	Condensa variabile o depositi di sporco sull'antenna	Eseguire la soppressione dei segnali di disturbo o aumentare la soppressione dei segnali di disturbo al massimo livello tramite editazione Per i materiali in pezzatura utilizzare sensori radar con attacco per purga d'aria

Comportamento dopo l'eliminazione dei disturbi

A seconda della causa del disturbo e delle misure attuate è eventualmente necessario ripetere i passi operativi descritti nel capitolo "*Messa in servizio*" o eseguire un controllo di plausibilità e di completezza.

Hotline di assistenza 24 ore su 24

Se non si dovesse ottenere alcun risultato, chiamare la Service Hotline VEGA al numero +49 1805 858550.

La hotline è disponibile anche al di fuori del normale orario d'ufficio, 7 giorni su 7, 24 ore su 24.

Poiché offriamo questo servizio in tutto il mondo, l'assistenza viene fornita in lingua inglese. Il servizio è gratuito, al cliente sarà addebitato solamente il costo della chiamata.

9.5 Sostituzione dell'unità l'elettronica

In caso di difetto, l'unità elettronica può essere sostituita dall'utente.

Nelle applicazioni Ex usare unicamente un apparecchio e un'unità elettronica con omologazione Ex.

Se non si dispone di un'unità elettronica sul posto, è possibile ordinarla alla propria filiale di competenza. Le unità elettroniche sono adeguate al relativo sensore e si differenziano nell'uscita del segnale e nell'alimentazione in tensione.

La nuova elettronica deve contenere le impostazioni di laboratorio del sensore, caricabili

- in laboratorio
- sul posto dall'utente

In entrambi i casi occorre indicare il numero di serie del sensore, rintracciabile sulla targhetta d'identificazione dell'apparecchio, all'interno della custodia e sulla bolla di consegna.

Per il caricamento sul posto è necessario dapprima scaricare da internet i dati dell'ordine (vedi -lstruzioni d'uso "*Unità elettronica*").

Avvertimento:

Le impostazioni specifiche per l'applicazione vanno immesse nuovamente. Per questo, dopo la sostituzione dell'elettronica va eseguita una nuova messa in servizio.

Se in occasione della prima messa in servizio del sensore sono stati memorizzati i dati della parametrizzazione, questi possono essere trasferiti nuovamente nell'unità elettronica sostitutiva. In tal caso non è necessario eseguire una nuova messa in servizio.

9.6 Aggiornamento del software

Un aggiornamento del software dell'apparecchio può essere effettuato tramite:

- Adattatore d'interfaccia VEGACONNECT
- Segnale HART
- Bluetooth

A seconda della modalità sono necessari i seguenti elementi:

- Apparecchio
- Alimentazione in tensione
- Adattatore d'interfaccia VEGACONNECT
- Tastierino di taratura con display PLICSCOM con funzione Bluetooth
- PC con PACTware/DTM e adattatore USB Bluetooth
- Software attuale dell'apparecchio come file

Il software attuale dell'apparecchio e informazioni dettagliate sulla procedura da seguire sono disponibili nella sezione di download del nostra homepage www.vega.com.

Avvertimento:

È possibile che gli apparecchi con omologazioni siano legati a determinate versioni del software. Assicurarsi perciò in caso di aggiornamento del software che l'omologazione rimanga operativa.

Informazioni dettagliate sono disponibili nella sezione di download sul sito www.vega.com.

9.7 Come procedere in caso di riparazione

Un foglio di reso apparecchio e informazioni dettagliate sulla procedu ra sono disponibili nella sezione di download sul sito <u>www.vega.com</u>.

Seguendo la procedura ci aiutate ad eseguire la riparazione rapidamente e senza necessità di chiedervi ulteriori chiarimenti.

In caso di riparazione procede come descritto di seguito.

- Stampare e compilare un modulo per ogni apparecchio
- Pulire l'apparecchio e predisporre un imballo infrangibile
- Allegare il modulo compilato e una eventuale scheda di sicurezza, esternamente, sull'imballaggio
- Richiedere l'indirizzo cui inviare l'apparecchio alla rappresentanza competente, indicata sulla nostra homepage www.vega.com.

10 Smontaggio

10.1 Sequenza di smontaggio

Attenzione:

Prima di smontare l'apparecchio assicurarsi che non esistano condizioni di processo pericolose, per es. pressione nel serbatoio o nella tubazione, temperature elevate, prodotti aggressivi o tossici, ecc.

Seguire le indicazioni dei capitoli "Montaggio" e "Collegamento all'alimentazione in tensione" e procedere allo stesso modo, ma nella seguenza inversa.

10.2 Smaltimento

L'apparecchio è costruito con materiali che possono essere riciclati dalle aziende specializzate. Abbiamo realizzato componenti che possono essere rimossi facilmente, costruiti anch'essi con materiali riciclabili.

Direttiva RAEE

L'apparecchio non rientra nel campo di applicazione della direttiva UE RAEE. Conformemente all'art. 2 di questa direttiva, sono esclusi dispositivi elettrici ed elettronici che fanno parte di un altro dispositivo che non rientra nel campo di applicazione della direttiva. Tra questi si annoverano tra l'altro gli impianti industriali fissi.

Consegnate l'apparecchio a un'azienda di riciclaggio specializzata e non utilizzate i punti di raccolta comunali.

Se non è possibile smaltire correttamente il vecchio apparecchio, contattateci per l'eventuale restituzione e il riciclaggio.

11 Appendice

11.1 Dati tecnici

Avvertenza per gli apparecchi omologati

Per gli apparecchi omologati (per es. con omologazione Ex) valgono i dati tecnici riportati nelle relative normative di sicurezza. Tali dati, per es. relativi alle condizioni di processo o all'alimentazione in tensione, possono variare rispetto a quelli qui riportati.

Dati generali

316L corrisponde a 1.4404 oppure a 1.4435

Materiali, a contatto col prodotto

Sistema d'antenna incapsulata

- Attacco di processo PVDF, 316L

- Guarnizione di processo FKM (IDG FKM 13-75)

- Antenna PVDF

Antenna a cono in resina

- Flangia d'adattamento PP-GF30 nero

- Guarnizione flangia d'adattamento FKM (COG VI500), EPDM (COG AP310)

Lente di focalizzazione

PF

Attacco per spurgo

Anello per spurgo
 PP-GFK

- Guarnizione circolare attacco per FKM (SHS FPM 70C3 GLT), EPDM (COG AP310)

spurgo

Valvola antiritorno
 316 Ti

Guarnizione valvola antiritorno
 FKM (SHS FPM 70C3 GLT), EPDM (COG AP310)

Materiali, non a contatto col prodotto

Elementi di montaggio

- Cono di adattamento antenna a cono PBT-GF 30

in resina

Flangia di raccordo
 PP-GF30 nero

Staffa di montaggio
Viti di fissaggio staffa di montaggio
Viti di fissaggio flangia d'adattamento
304

Custodia

- Custodia in resina Resina PBT (poliestere)

- Custodia di alluminio pressofuso Alluminio pressofuso AlSi10Mg, rivestito di polveri

(Base: poliestere)

Custodia di acciaio speciale
 316L

Pressacavo
 PA, acciaio speciale, ottone

Guarnizione pressacavoTappo pressacavoPA

- Guarnizione tra custodia e coperchio

della custodia

- Finestrella coperchio della custodia

Silicone SI 850 R, NBR privo di silicone

Policarbonato (elencato UL-746-C), vetro²⁾

Morsetto di terra

316L

Peso, in base all'attacco di processo e al 0,7 ... 3,4 kg (1.543 ... 7.496 lbs)

materiale della custodia

Coppie di serraggio

Max. coppie di serraggio, esecuzione con filettatura

- G1½ 7 Nm (5.163 lbf ft)

Max. coppie di serraggio, esecuzione antenna a cono in resina

- Viti di montaggio staffa di montaggio

o 4 Nm (2.950 lbf ft)

sulla custodia del sensore

5 Nm (3.689 lbf ft)

Viti per flangia di raccordo DN 80Viti di arresto flangia di adattamen-

2,5 Nm (1.844 lbf ft)

to-antenna

- Viti per flangia di adattamento DN 100 7 Nm (5.163 lbf ft)

Max. coppie di serraggio per pressacavi NPT e tubi Conduit

Custodia in resina

10 Nm (7.376 lbf ft)

Custodia di alluminio/di acciaio

50 Nm (36.88 lbf ft)

speciale

Valori in ingresso

Grandezza di misura

Per grandezza di misura s'intende la distanza tra l'estremità dell'antenna del sensore e la superficie del prodotto. Il piano di riferimento per la misura è la superficie di tenuta del dado esagonale o il lato inferiore della flangia.

²⁾ Vetro in caso di custodia in alluminio e acciaio speciale microfuso

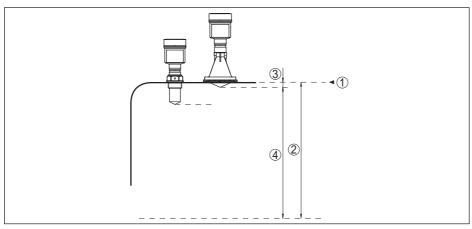


Figura 55: Dati relativi ai valori in ingresso

- 1 Piano di riferimento
- 2 Grandezza di misura, max. campo di misura
- 3 Lunghezza antenna
- 4 Campo di misura utile

Elettronica standard

Max. campo di misura 35 m (114.8 ft)

Campo di misura consigliato

Sistema d'antenna incapsulata fino a 10 m (32.81 ft)
 Antenna a cono in resina fino a 20 m (65.62 ft)

Elettronica con sensibilità più elevata

Max. campo di misura 35 m (114.8 ft)

Campo di misura consigliato

Sistema d'antenna incapsulata fino a 10 m (32.81 ft)
 Antenna a cono in resina fino a 20 m (65.62 ft)

Grandezza in uscita

Segnale in uscita 4 ... 20 mA/HART

Range del segnale in uscita 3,8 ... 20,5 mA/HART (regolazione di laboratorio)

Risoluzione del segnale 0,3 µA

Risoluzione di misura digitale 1 mm (0.039 in)

Segnale di guasto uscita in corrente

(impostabile)

valore mA invariato, 20,5 mA, 22 mA, < 3,6 mA

Max. corrente in uscita 22 mA

Carico Cfr. resistenza di carico in -Alimentazione in tensione-

Corrente di avviamento ≤ 3,6 mA; ≤ 10 mA per 5 ms dopo l'inserzione

Attenuazione (63 % dei valori in ingres- 0 ... 999 s

eo) impoetabile

so), impostabile

Valori in uscita HART secondo HART 7.03)

PV (Primary Value)
 SV (Secondary Value)
 TV (Third Value)
 Distanza
 percentuale
 Lin. percentuale

– QV (Fourth Value) scalareSpecifica HART soddisfatta 7.0

Ulteriori informazioni su Manufacturer ID, Vedere il sito web della HART Communication Founda-

ID apparecchi, revisione apparecchi tio

Scostamento di misura (secondo DIN EN 60770-1)

Condizioni di riferimento e di processo secondo DIN EN 61298-1

- temperatura +18 ... +30 °C (+64 ... +86 °F)

Umidità relativa dell'aria
 45 ... 75 %

- Pressione dell'aria 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Condizioni di riferimento per il montaggio

Distanza minima da strutture > 200 mm (7.874 in)Riflettore Piatto

- Riflessioni di disturbo Massimo segnale di disturbo 20 dB inferiore a segnale

utile

Scostamento di misura su liquidi ≤ 2 mm (distanza di misura > 0,5 m/1.6 ft)

Non riproducibilità⁴) ≤ 1 mm

Scostamento di misura su solidi in i valori dipendono fortemente dall'applicazione. Non è

perciò possibile fornire indicazioni definitive.

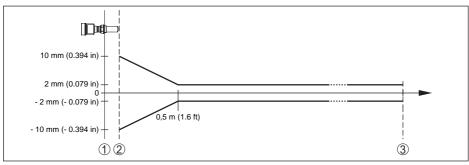


Figura 56: Scostamento di misura sotto condizioni di riferimento - sistema di antenna incapsulata

Piano di riferimento

pezzatura

- 2 Bordo dell'antenna
- 3 Campo di misura consigliato

³⁾ Valori di default, possono essere assegnati liberamente.

⁴⁾ Già compresa nello scostamento di misura

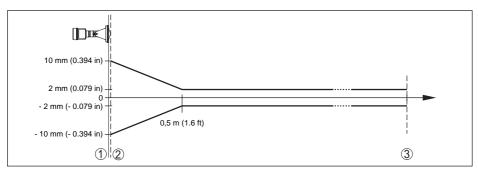


Figura 57: Scostamento di misura in condizioni di riferimento - antenna a cono di resina

- 1 Piano di riferimento
- 2 Bordo dell'antenna
- 3 Campo di misura consigliato

Grandezze d'influenza sulla precisione di misura

I dati valgono per il valore di misura digitale

Deriva termica - uscita digitale < 3 mm/10 K, max. 10 mm

Indicazioni valide anche per l'uscita in corrente

Deriva termica - uscita in corrente < 0,03%/10 K riferita all'escursione 16 mA ovv. ≤ 0,3%

Scostamento sull'uscita in corrente dovu- < 15 µA

to a conversione digitale-analogica

Ulteriore scostamento di misura per effetto di induzioni elettromagnetiche

- Conformemente a NAMUR NE 21 $<80~\mu\text{A}$ - Conformemente a EN 61326-1 Nessuna - Secondo IACS E10 (costruzioni nava- $<250~\mu\text{A}$ li)/IEC 60945

Caratteristiche di misura e dati di notenza

Caratteristiche di misura e dati di potenza		
Frequenza di misura	banda K (tecnologia 26 GHz)	
Tempo ciclo di misura		
 Elettronica standard 	ca. 450 ms	
- Elettronica con sensibilità più elevata	ca. 700 ms	
Tempo di risposta del salto ⁵⁾	≤3s	
Angolo d'irraggiamento ⁶⁾		
 Sistema d'antenna incapsulata 	22°	
- Antenna a cono in resina	10°	

Potenza HF irradiata (dipendente dalla parametrizzazione)7)

- Densità media di potenza di emissione spettrale
- 5) Intervallo di tempo che, dopo una rapida variazione della distanza di misura di max. 0,5 m in caso di applicazioni su liquidi e max. 2 m in caso di applicazioni su solidi in pezzatura, intercorre prima che il segnale di uscita raggiunga per la prima volta il 90% del suo valore a regime (IEC 61298-2).
- 6) Al di fuori dell'angolo di irradiazione indicato l'energia del segnale radar ha un livello ridotto del 50% (-3 dB).
- 7) EIRP: Equivalent Isotropic Radiated Power.

 Max. densità di potenza di emissione +43 dBm/50 MHz EIRP spettrale

 Max. densità di potenza di emissione < 1 μW/cm² a distanza di 1 m

Condizioni ambientali

Temperatura ambiente, di stoccaggio e -40 ... +80 °C (-40 ... +176 °F)

di trasporto

Condizioni di processo

Per quanto riguarda le condizioni di processo, è necessario attenersi anche alle indicazioni della targhetta d'identificazione. Il valore valido è sempre il più basso.

Pressione del serbatoio

 Sistema d'antenna incapsulata
 -1 ... 3 bar (-100 ... 300 kPa/-14.5 ... 43.5 psi)
 - Antenna a cono in resina
 -1 ... 2 bar (-100 ... 200 kPa/-14.5 ... 29.0 psig)
 - Esecuzione con flangia di adattamento da DN 100 PP ovv. PP-GF 30

Temperatura di processo (misurata all'at- -40 ... +80 °C (-40 ... +176 °F)

tacco di processo)

Resistenza alla vibrazione

- Con flangia di adattamento 2 g a 5 ... 200 Hz secondo EN 60068-2-6 (vibrazione

alla risonanza)

Con staffa di montaggio
 1 g a 5 ... 200 Hz secondo EN 60068-2-6 (vibrazione

alla risonanza)

Resistenza agli shock 100 g, 6 ms secondo EN 60068-2-27 (shock meccanico)

Dati elettromeccanici - Esecuzione IP 66/IP 67 e IP 66/IP 68; 0,2 bar

Opzioni del passacavo

Passacavo M20 x 1,5; ½ NPT

- Pressacavo M20 x 1,5; ½ NPT (ø del cavo v. tabella in basso)

- Tappo cieco M20 x 1.5: ½ NPT

- Tappo filettato ½ NPT

Materiale pressacavo	Materiale guarnizione	Diametro del cavo				
		4,5 8,5 mm	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA	NBR	_	•	•	_	•
Ottone niche- lato	NBR	•	•	•	-	-
Acciaio spe- ciale	NBR	-	•	•	-	•

Sezione dei conduttori (morsetti a molla)

Filo massiccio, cavetto
 Cavetto con bussola terminale
 1,2 ... 2,5 mm² (AWG 24 ... 14)
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Dati elettromeccanici - Esecuzione IP 66/IP 68 (1 bar)

Opzioni del passacavo

- Pressacavo con cavo di collegamento M20 x 1,5 (cavo: ø 5 ... 9 mm)

integrato

- Passacavo ½ NPT

Tappo cieco
 M20 x 1,5; ½ NPT

Cavo di collegamento

- Sezione dei conduttori 0,5 mm² (AWG 20)

- Resistenza conduttore $< 0.036 \Omega/m$

- Resistenza a trazione < 1200 N (270 lbf)

- Lunghezze standard 5 m (16.4 ft)

- Max. lunghezza 180 m (590.6 ft)

- Min. raggio di curvatura 25 mm (0.984 in) con 25 °C (77 °F)

- Diametro ca. 8 mm (0.315 in)

Colore - esecuzione non Ex
 Colore nero
 Colore - esecuzione Ex
 Colore blu

Tastierino di taratura con display

Elemento di visualizzazione Display con retroilluminazione

Visualizzazione del valore di misura

- Numero di cifre 5

Elementi di servizio

- 4 tasti [OK], [->], [+], [ESC]

Interruttore
 Bluetooth On/Off

Interfaccia Bluetooth

- Standard Bluetooth smart

- Raggio d'azione 25 m (82.02 ft)

Grado di protezione

Non installato IP 20

- Installato nella custodia senza coper- IP 40

chio

Materiali

- Custodia ABS

- Finestrella Lamina di poliestere

Sicurezza funzionale Senza effetti di ritorno SIL

Interfaccia a unità d'indicazione e calibrazione esterna

Trasmissione dati digitale (bus I²C)

Cavo di collegamento Quadrifilare

Esecuzione del	Struttura del cavo di collegamento				
sensore	Lunghezza linea	Linea standard	Cavo speciale	Schermato	
4 20 mA/HART	50 m	•	-	-	
Profibus PA, Foundation Fieldbus	25 m	-	•	•	

Orologio integrato

Formato data Giorno.Mese.Anno

Formato ora 12 h/24 h

Fuso orario impostato in laboratorio CET

Max. scostamento 10,5 min./anno

Grandezza in uscita aggiuntiva - Temperatura dell'elettronica

Campo -40 ... +85 °C (-40 ... +185 °F)

Risoluzione < 0,1 K Scostamento di misura ±3 K

Output dei valori di temperatura

Visualizzazione
 Tramite il tastierino di taratura con display

Analogico Tramite l'uscita in corrente, l'uscita in corrente supple-

mentare

Digitale
 Tramite il segnale in uscita digitale (a seconda dell'ese-

cuzione dell'elettronica)

Alimentazione in tensione

Tensione d'esercizio U_R

Apparecchio non Ex
Apparecchio Ex ia
Apparecchio Ex-d-ia
9,6 ... 35 V DC
Apparecchio Ex-d-ia
15 ... 35 V DC

Tensione di esercizio U_R (tastierino di taratura con display illuminato)

Apparecchio non ExApparecchio Ex ia16 ... 35 V DC16 ... 30 V DC

Apparecchio Ex-d-ia
 Nessuna illuminazione possibile (barriera ia integrata)

Protezione contro inversione di polarità Integrata

Ondulazione residua ammessa - Apparecchio non Ex, Ex-ia

- per 9,6 V< U_B < 14 V ≤ 0,7 V_{eff} (16 ... 400 Hz) - per 18 V< U_B < 36 V ≤ 1,0 V_{eff} (16 ... 400 Hz)

Ondulazione residua ammessa - Apparecchio Ex-d-ia

 $- \text{ per } 18 \text{ V} < \text{U}_{\text{B}} < 36 \text{ V}$ $\leq 1 \text{ V}_{\text{eff}} (16 \dots 400 \text{ Hz})$

Resistenza di carico

- Calcolo (U_R - U_{min})/0,022 A

– Esempio - apparecchi non Ex con (24 V - 9,6 V)/0,022 A = 655 Ω

U_D= 24 V DC

Collegamenti a potenziale e separazioni elettriche nell'apparecchio

Elettronica Non legata a potenziale

Tensione d'isolamento⁸⁾ 500 V AC

Collegamento conduttivo Tra morsetto di terra attacco di processo metallico

Protezione contro le sovratensioni

Massima tensione continua 35 V DC

Max. corrente in ingresso ammessa 500 mA

Tensione di intervento > 500 V

Corrente nominale impulsiva dispersa < 10 kA (8/20 µs)

Protezioni elettriche

Materiale della custodia	Esecuzione	Grado di protezione se- condo IEC 60529	Grado di protezione se- condo NEMA
Resina	A una camera	IP 66/IP 67	Type 4X
	A due camere	IP 66/IP 67	Type 4X
Alluminio	A una camera	IP 66/IP 68 (0,2 bar) IP 68 (1 bar)	Type 6P
	A due camere	IP 66/IP 68 (0,2 bar) IP 68 (1 bar)	Type 6P
Acciaio speciale (a lucidatura elettrochimica)	A una camera	IP 66/IP 68 (0,2 bar)	Type 6P
Acciaio speciale (microfusione)	A una camera	IP 66/IP 68 (0,2 bar) IP 68 (1 bar)	Type 6P
	A due camere	IP 66/IP 68 (0,2 bar) IP 68 (1 bar)	Type 6P

Collegamento dell'alimentatore Reti della categoria di sovratensione III

Altitudine d'impiego sopra il livello del mare

- standard fino a 2000 m (6562 ft)

- con protezione contro le sovratensioni fino a 5000 m (16404 ft)

a monte

Grado di inquinamento (in caso di impie- 4 go con grado di protezione della custodia

soddisfatto)

Classe di protezione (IEC 61010-1) III

Omologazioni

Gli apparecchi con omologazioni possono avere dati tecnici differenti a seconda del modello.

Per questi apparecchi è quindi necessario rispettare i relativi documenti d'omologazione, che fanno parte della fornitura dell'apparecchio o possono essere scaricati da www.vega.com, "Ricerca apparecchio (numero di serie)", nonché nella sezione di download.

⁸⁾ Separazione galvanica tra elettronica e parti metalliche dell'apparecchio

11.2 Dimensioni

I seguenti disegni quotati illustrano solo alcune delle possibili esecuzioni. Disegni quotati dettagliati possono essere scaricati dal sito www.vega.com/downloads , "Disegni".

Custodia in resina

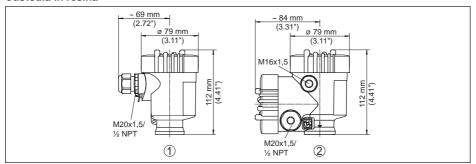


Figura 58: Le differenti custodie con grado di protezione IP 66/IP 67 (con tastierino di taratura con display incorporato l'altezza della custodia aumenta di 9 mm/0.35 in)

- 1 A una camera in resina
- 2 A due camere in resina

Custodia in alluminio

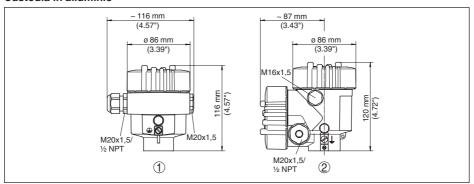


Figura 59: Differenti custodie con grado di protezione IP 66/IP 68 (0,2 bar), (con tastierino di taratura con display incorporato l'altezza della custodia aumenta di 18 mm/0.71 in)

- 1 Alluminio a una camera
- 2 Alluminio a due camere

Custodia in alluminio con grado di protezione IP 66/IP 68, 1 bar

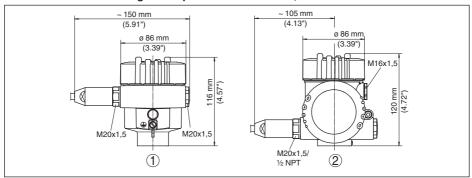


Figura 60: Differenti custodie con grado di protezione IP 66/IP 68 (1 bar), (con tastierino di taratura con display incorporato l'altezza della custodia aumenta di 18 mm/0.71 in)

- 1 Alluminio a una camera
- 2 Alluminio a due camere

Custodia di acciaio speciale

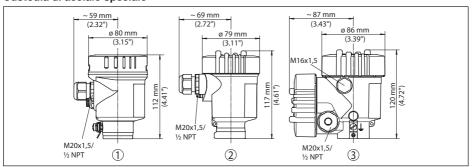


Figura 61: Differenti custodie con grado di protezione IP 66/IP 68 (0,2 bar), (con tastierino di taratura con display incorporato l'altezza della custodia aumenta di 18 mm/0.71 in)

- 1 A una camera in acciaio speciale (lucidatura elettrochimica)
- 2 A una camera in acciaio speciale (microfuso)
- 3 Acciaio speciale a due camere (microfusione)

Custodia di acciaio speciale con grado di protezione IP 66/IP 68, 1 bar

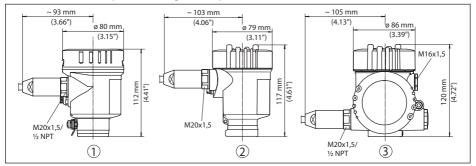


Figura 62: Differenti custodie con grado di protezione IP 66/IP 68 (1 bar), (con tastierino di taratura con display incorporato l'altezza della custodia aumenta di 18 mm/0.71 in)

- 1 A una camera in acciaio speciale (lucidatura elettrochimica)
- 2 A una camera in acciaio speciale (microfuso)
- 3 Acciaio speciale a due camere (microfusione)

VEGAPULS 61, esecuzione filettata

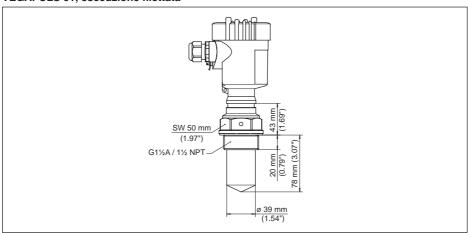


Figura 63: VEGAPULS 61, filettatura G11/2, 11/2 NPT

VEGAPULS 61, attacco asettico

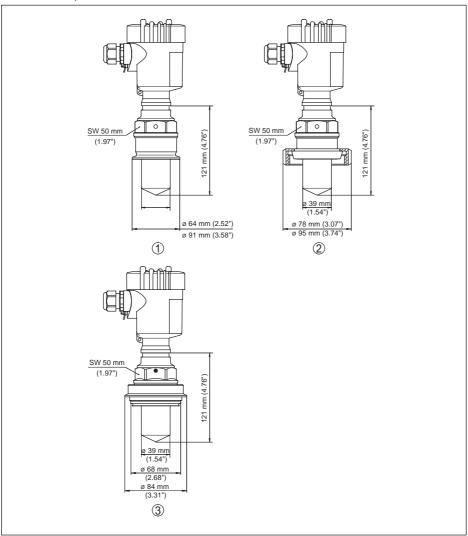


Figura 64: VEGAPULS 61, attacco asettico

- 1 Clamp 2" PN 16 (ø 64 mm), 3" PN 16 (ø 91 mm), (DIN 32676, ISO 2852)
- 2 Attacco rapido filettato DN 50, DN 80 (DIN 11851)
- 3 Tuchenhagen Varivent DN 32

VEGAPULS 61, esecuzione con staffa di montaggio

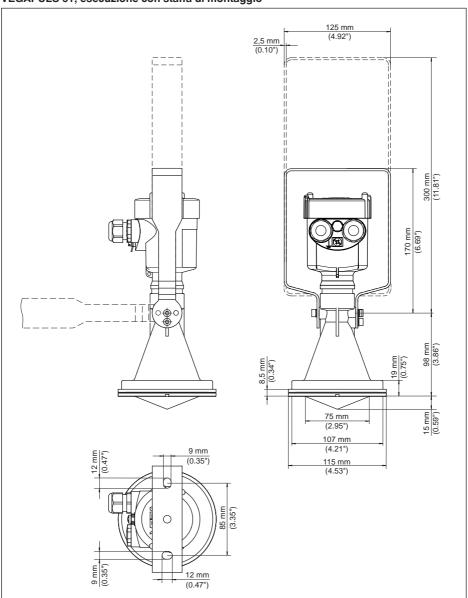


Figura 65: VEGAPULS 61, staffa di montaggio lunga 170 o 300 mm

VEGAPULS 61, esecuzione con staffa di montaggio e fascette di fissaggio

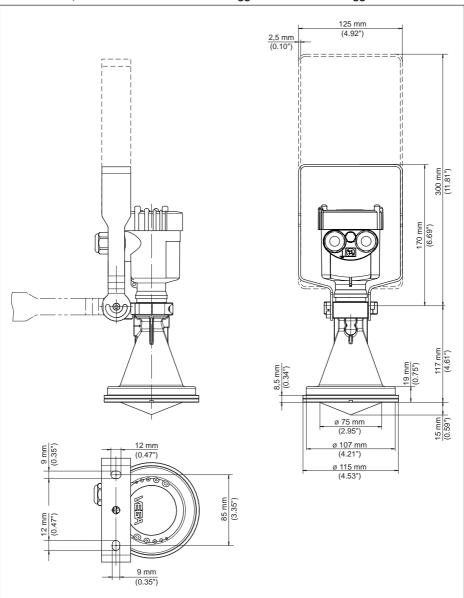


Figura 66: VEGAPULS 61, staffa di montaggio lunga 170 o 300 mm

VEGAPULS 61, modello con staffa di montaggio e riflettore

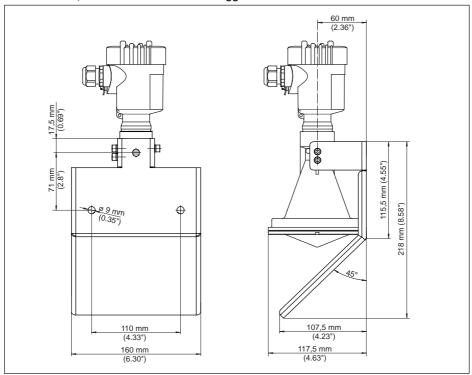


Figura 67: VEGAPULS 61, staffa di montaggio e riflettore

VEGAPULS 61, esecuzione con flangia di raccordo

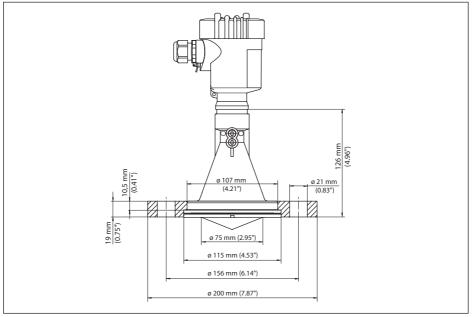


Figura 68: VEGAPULS 61, flangia di raccordo adatta a DN 80 PN 16, ASME 3" 150lbs, JIS80 10K

VEGAPULS 61, esecuzione con flangia di raccordo e attacco per spurgo

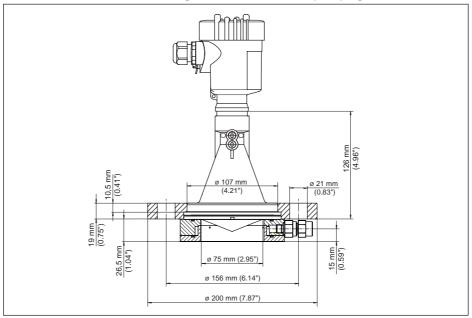


Figura 69: VEGAPULS 61, flangia di raccordo con attacco per spurgo, adeguata a DN 80 PN 16, ASME 3" 150lbs, JIS80 10K

VEGAPULS 61, esecuzione con flangia d'adattamento

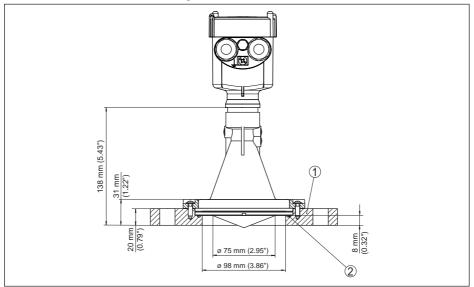


Figura 70: VEGAPULS 61, flangia di adattamento

- 1 Flangia d'adattamento
- 2 Guarnizione

VEGAPULS 61, esecuzione con flangia di adattamento e attacco per spurgo

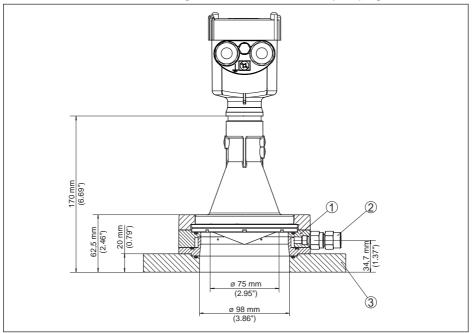


Figura 71: VEGAPULS 61, flangia di adattamento con lavaggio ad aria

- 1 Attacco per spurgo
- 2 Valvola antiritorno
- 3 Flangia d'adattamento

11.3 Diritti di proprietà industriale

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.4 Marchio depositato

Tutti i marchi utilizzati, i nomi commerciali e delle società sono proprietà del loro legittimo proprietario/autore.

INDEX

Α

agitatori 20 Allacciamento elettrico 28, 29 Altezza del serbatoio 46 Attenuazione 48

В

Bloccare calibrazione 48

C

Caratteristiche di riflessione del prodotto 41 Codici d'errore 66 Collegamento di terra 29 Controllare il segnale in uscita 68 Copiare impostazioni apparecchio 56 Curva d'eco 52 Curva di linearizzazione 53

D

Data/ora 54 Denominazione punto di misura 40

Ε

EDD (Enhanced Device Description) 62 Eliminazione delle anomalie 67 Esecuzione dell'apparecchio 57

F

Forma del serbatoio 45 Formazione di schiuma 21

н

HART 59 Hotline di assistenza 71

L

Illuminazione 49 Indicatore di scarto (valore min/max) 50

L

Lingua 49

M

Memorizzazione eventi 63 Memorizzazione valori di misura 63 Menu principale 39 Misura di portata

- Canale Khafagi-Venturi 27
- Stramazzo rettangolare 26

Misura nel bypass 24

Misura nel tubo di calma 21 Modalità HART 56 Modo uscita in corrente 48

N

NAMUR NE 107 64, 65, 67

O

Orientamento del sensore 20

P

PIN 54 Polarizzazione 15 Posizione di montaggio 16 Prodotto in ingresso 17

R

Reset 54 Riparazione 72

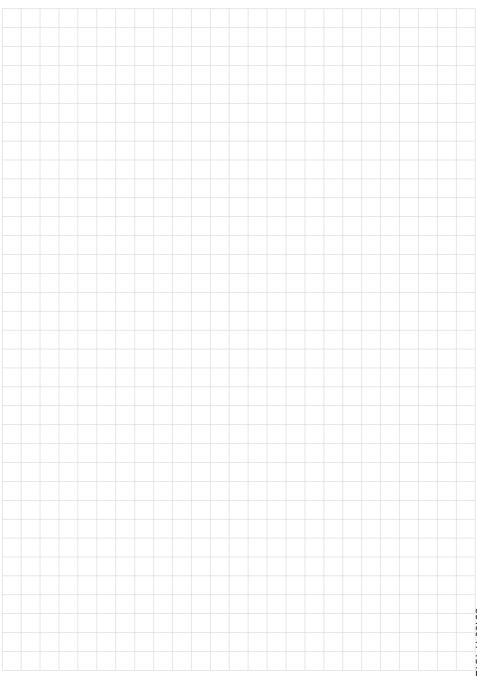
S

Schermatura 29
Scostamento di misura 68
Sicurezza di misura 50
Sicurezza di sovrappieno secondo WHG 54
Simulazione 50
Soppressione dei segnali di disturbo 52
Stato apparecchio 50
Strutture interne al serbatoio 20

Т

Taratura 47 temperatura dell'elettronica 50 Tronchetto 17, 18

Ш


Unità dell'apparecchio 52 Uscita in corrente min./max. 48 Uso

-Sistema 38

V

Valori di default 55 Vano dell'elettronica e di connessione 31

Finito di stampare:

Le informazioni contenute in questo manuale d'uso rispecchiano le conoscenze disponibili al momento della messa in stampa.

Riserva di apportare modifiche

© VEGA Grieshaber KG, Schiltach/Germany 2018

6499-IT-181211